
Interactive Kinematic Objects in Virtual Environments

Randall G. Keller

Master’s Project
under the direction of Carlo Séquin

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley

December 18, 1997

Abstract

A new extension package entitled WALK-KIN has been integrated into the existing
WALKTHRU/WALKEDIT system. It provides three separate elements that combine to create a more
interesting and engaging virtual environment.

The first element is the introduction of the GLIDE compiled-code paradigm for behavior scripting. In
UniGrafix, the parsed scripting mechanism has a limited expression semantics allowing only primitive
behavior to be defined. The new system is both faster and more expressive since it is compiled and uses
C as a full scripting language. The new extension allows authors to create content objects capable of
performing limited simulations in real-time within the virtual environment.

The second element is the integration of this scripting mechanism into the WALKTHRU/ WALKEDIT
environment. Using the new WALK-KIN extensions, kinematic objects, which are more complex than
previously possible and operate faster, can be placed within the virtual WALKTHRU environment and
manipulated using the existing WALKEDIT object association primitives.

The third element is a pair of interaction event handlers. The first is an interactive script execution
mechanism that enables time-varying objects to respond to user interaction. An execution context has
also been provided to the updating function enabling modification of object properties. A second event
handler makes it possible to link the various content objects of the virtual environment to related
information in other files or databases. The system functions by associating a URL with each prototype
or instance of a virtual element. When a user selects such an object, the page at the designated URL is
displayed by a Web browser.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
18 DEC 1997 2. REPORT TYPE

3. DATES COVERED
 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
Interactive Kinematic Objects in Virtual Environments

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A new extension package entitled WALK-KIN has been integrated into the existing
WALKTHRU/WALKEDIT system. It provides three separate elements that combine to create a more
interesting and engaging virtual environment. The first element is the introduction of the GLIDE
compiled-code paradigm for behavior scripting. In UniGrafix, the parsed scripting mechanism has a
limited expression semantics allowing only primitive behavior to be defined. The new system is both faster
and more expressive since it is compiled and uses C as a full scripting language. The new extension allows
authors to create content objects capable of performing limited simulations in real-time within the virtual
environment. The second element is the integration of this scripting environment into the
WALKTHRU/WALKEDIT environment. Using the new WALK-KIN extensions, kinematic objects, which
are more complex than previously possible and operate faster, can be placed within the virtual
WALKTHRU environment and manipulated using the existing WALKEDIT object association primitives.
The third element is a pair of interaction event handlers. The first is an interactive script execution
mechanism that enables time-varying objects to respond to user interaction. An execution context has also
been provided to the updating function enabling modification of object properties. A second event handler
makes it possible to link the various content objects of the virtual environment to related information in
other files or databases. The system functions by associating a URL with each prototype or instance of a
virtual element. When a user selects such an object, the page at the designated URL is displayed by a Web
browser.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

85

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Contents

1 Introduction... 1
1.1 Motivation ... 2

1.1.1 What Makes a Good Virtual Reality System?.. 2
1.2 Project Goals ... 3
1.3 Overview of Work... 3
1.4 Report Organization .. 4

2 Related Work... 5
2.1 Kinematic Scene Description Languages .. 5

2.1.1 UniGrafix and the BUMP Extensions.. 5
2.1.2 The GLIDE Scene Description Language.. 7
2.1.3 Open Inventor and VRML... 9

Open Inventor.. 9
VRML ... 9

2.2 Berkeley Visualization Systems .. 10
2.2.1 A Kinematic Scene Viewer: UGMovie.. 10
2.2.2 The WALKTHRU System... 11
2.2.3 The WALKEDIT System... 12
2.2.4 The WALKTHRU-CFAST Simulation Architecture.. 12

3 Kinematic Objects.. 14
3.1 Adding Complex Kinematics to UniGrafix.. 14

3.1.1 Modifying the UniGrafix Parser ... 14
Creating a C Code Output Parser... 15
The Augmented Scene Graph Structure .. 16
The Time-Varying Expression Statement List... 17
Removal of the BUMP Syntax .. 17
Advantages and Disadvantages of the New Parser .. 18

3.1.2 Modifications to the UGMovie Application .. 19
Removal of the BUMP Extension Elements from UGMovie .. 19
Incorporating the New UniGrafix Parser ... 20
Creation of a Stand-alone First Pass Parser ... 20

3.2 Dynamic Linking... 20
3.3 Performance Results.. 22

3.3.1 Analysis of Pixie and Prof Trace Data ... 22
3.3.2 Analysis of Time Measurements.. 25
3.3.3 Comparison of the Performance Measurements... 27

4 The WALKTHRU Authoring Environment for Kinematic Objects .. 29
4.1 The Original Kinematic Objects in the WALKTHRU .. 29
4.2 Additions and Alterations to the WALKTHRU’s Animation Library .. 32

4.2.1 Altering the Animation Structure... 33
4.2.2 Changes to the Kinematic Object Updating Routines .. 33
4.2.3 Modifications to Enable WALKEDIT to Manipulate Kinematic Objects.. 35

4.3 Modifications to the WALKTHRU Parser.. 36
4.4 Examples of Kinematic Objects .. 38

4.4.1 The Simple Hingebug and Cubogear ... 38
4.4.2 A Complicated Pseudo-Physics Simulation (the Gravity Example) .. 38

4.4.3 A Multi-Colored, Multi-Textured Object... 39
5 Interactive Kinematic Objects in the WALKTHRU.. 40

5.1 Overview of the System .. 40
5.2 Object Selection .. 42
5.3 The WALK-KIN Interaction Event Manager.. 42

5.3.1 WWW Object Query Event Handler ... 43
5.3.2 Kinematic Object Interaction Event Handler ... 45

5.4 WALKEDIT and Object Associations .. 47
5.4.1 Example of an Interactive Office Chair Created Using Object Associations ... 48
5.4.2 Example of an Interactive Door Created Using Object Associations ... 49

5.5 Examples of Interactive Kinematic Objects .. 49
5.5.1 Interactive Moving Sculptures ... 50
5.5.2 A Video Playback Viewscreen... 50

6 Discussion and Future Work.. 53
7 Conclusions .. 55
Acknowledgements... 57
References ... 58
Appendix A: New Syntax for Time-Varying UniGrafix ... 61

Vardef statement: .. 61
Vertex statement:... 62
Instance statement: .. 63
Color statement: .. 64
Cinclude statement: ... 64
Omitted Statements: .. 65
Predefined Variables: .. 65

Appendix B: Example time-varying geometry files .. 66
Original Cubogear File .. 66
New Cubogear File.. 67
Original Juggling File.. 68
Preprocessed Juggling File .. 69
New Juggling File ... 73
C Code File for New Juggling Example.. 73
Gravity Simulation New Kinematic UniGrafix File.. 75
C Code Control File for Gravity Simulation ... 76

Appendix C: Locations of Demo Files and Other Related Example Files... 82

1

1 Introduction

The Berkeley Architectural WALKTHRU system [11,12,27,28] was developed to enable a user
to traverse a complex virtual building environment in real-time. The WALKTHRU system is
both interactive and time-varying, but both of these aspects are quite limited. Interaction with
the system is restricted to the user’s navigation of the 3D environment; the user may interactively
determine the path through the virtual world, but objects are not reactive. The time-varying
aspect of the virtual environment is similarly limited to a small number of moving objects with
simple behaviors.

The interactive aspects and the handling of time-varying objects were developed as separate
extensions to the WALKTHRU. The WALKEDIT extension [4,5] addresses the interaction
issue by providing a paradigm for interacting with and manipulating interior objects within the
3D virtual environment in real-time, and the WALKTHRU-CFAST extension [3], was created to
improve the simulation capabilities of the visualization environment. The latter is a merger
between the CFAST [21] fire simulation system and the WALKTHRU visualization application.
Both of the original programs operate on highly occluded architectural environments, as does the
merged system. The architecture of the merged system was constructed in such a way that other
simulation systems can be connected to the WALKTHRU visualization system in a generic
fashion.

The primary focus of the work presented in this report is to develop a system for defining and
interacting with kinematic objects in virtual environments, in particular within the WALKTHRU
system. This work builds upon the basic WALKTHRU/WALKEDIT framework. In this context,
kinematic refers to an object that moves with respect to time but does so in a non-physical
manner. A clock whose arms move through a rigid-body transformation (in this case a time-
based rotation) is an example of a kinematic object. In contrast, a clock, which consists of a
complicated physical simulation involving a pendulum and a gear mechanism, is a dynamics
simulation and beyond the scope of this work. Finally as an example of a possible interaction
mechanism, the clock object’s arms could respond to the user, allowing them to be set with
mouse clicks and drags. Clearly the presence of such interactive kinematic objects can add a
great deal to an otherwise static virtual environment.

As part of the work accomplished in this report, the WALKTHRU and WALKEDIT systems
have been extended to support interactive kinematic objects by providing an interaction
mechanism and an authoring environment. This new extension is called WALK-KIN for
“kinematic WALKTHRU” and is built into the WALKEDIT framework as a package for the
WALKTHRU renderer and interaction system. Examples of interactive kinematic objects built
using the extension’s mechanisms include a kinematic sculpture that can be activated by
selecting its pedestal base with the mouse, and an office chair that can be interacted with in a
physically plausible manner. These simple example objects represent a proof of concept; the
same mechanisms could be used to construct something as sophisticated as an autonomous agent
implemented as an interactive kinematic object.

2

1.1 Motivation

As motivation for adding kinematics and interactivity, we consider virtual reality systems in
general. We begin by defining a framework for distinguishing between a variety of virtual
reality systems. Then we examine the elements of the WALKTHRU and related systems and
discuss their features within this domain. Finally, we consider the location of the improved
WALK-KIN system in this classification framework.

1.1.1 What Makes a Good Virtual Reality System?

The answer to this question is still the topic of debate and research, but some clarifying work has
been done. Zeltzer [30] proposes a taxonomy for virtual reality systems that provides a basis for
understanding existing systems as well as the new WALK-KIN extension. Zeltzer decomposes
the essential elements of a virtual reality (VR) system along three distinct axes: Autonomy,
Interaction, and Presence. These three dimensions range from 0 to 1 and thus form a unit cube,
which can be used to categorize the space of all possible VR systems. The concept of Autonomy
represents the complexity of response that an object exhibits when exposed to external events.
Interaction categorizes both the number and the speed at which model parameters can be
accessed and altered by the user and other virtual agents. Presence is a rough measure of both the
quality and number of senses effectively stimulated by the virtual environment interface.
Alternate definitions of Presence have been proposed. Slater [25,26] argues that the notion of
Presence can be further subdivided into two distinct parameters, a quantitative measurement of
the immersion of the virtual environment (something akin to Zeltzer’s relationship between
stimuli and senses) and a subjective measure of the psychological feeling imparted on the user by
the environment itself. This psychological aspect, the second parameter, becomes very
important to our discussion of Presence. In considering our virtual environments; we propose
that interaction with a kinematic object can increase the user’s sense of Presence in the virtual
environment if the interaction occurs in a natural and plausible fashion. For example, opening a
door by selecting and dragging its handle with the mouse is an intuitive and natural interaction
mechanism, while opening it using a menu driven mechanism is awkward and lessens the
illusion of virtual reality and the user’s notion of Presence.

The original WALKTHRU system contains few moving objects and no means of interacting
with these kinematic objects. Thus the WALKTHRU system ranks quite low on all three of the
virtual reality measures. Subsequent work involving interaction was developed for the
placement of interior objects within the virtual environment and is contained in the WALKEDIT
extension to the WALKTHRU. The WALKEDIT extension increases the Interaction of the
system by allowing the positioning parameters of interior objects to be manipulated in real time,
but it has no effect on the other two aspects of the system. In contrast the WALKTHRU-CFAST
simulation and visualization system augments the Autonomy value of the system through the
simulations, but not the interactive elements of the virtual environment. Therefore, the primary
aim of this work is to increase the WALKTHRU system’s value along both of these axes.
Towards this end, the new WALK-KIN extension enables the creation and use of interactive
kinematic objects within the WALKTHRU’s virtual environment. Finally, we also claim that the

3

use of interactive kinematic objects in a plausible and realistic fashion can augment the user’s
sense of Presence in the virtual environment.

1.2 Project Goals

The primary aim of this project is to incorporate interactive kinematic objects into the
WALKTHRU/WALKEDIT virtual environment. Interactive kinematic objects capable of
expressing interesting behaviors and reacting to the user in real-time will augment the virtual
experience making it both more engaging and realistic. In order to achieve this aim we have
separated the work into three separate goals:

1.) Improve the expressibility and performance of the scripting mechanism for time-
varying objects: We achieve this by changing our object behavior scripting system from a
parsed, limited expression syntax to a complete and compiled programming language.

2.) Develop and implement a framework for defining interactive kinematic objects: Here
our goal is to provide an author with the ability to create virtual world analogs of functioning
objects. Simple objects, such as windows and doors that open and close, or an elevator with
call buttons, add to the model’s realism. In addition, such objects can be linked with an
existing simulation in order to enhance its interactivity and functionality.

3.) Given an interaction mechanism for objects in the 3D world, create useful event
handlers to activate kinematic interactive objects in a variety of modes: We incorporate
the mechanisms for moving objects from the WALKEDIT [4, 5] package and provide an
enhanced system for accessing particular object properties.

1.3 Overview of Work

The work presented in this report concerns an extension to the existing WALKTHRU framework
called WALK-KIN. It provides both an authoring environment and an interaction mechanism
enabling interactive kinematic objects in the WALKTHRU’s virtual environment. The behavior
scripting and interaction techniques provided by WALK-KIN were chosen to enhance the
notions of Autonomy and Interaction discussed above. The WALK-KIN extension is the result
of three related pieces of work; each piece of work solves one of the aforementioned goals:

1.) Adding Kinematic Objects: In order to understand the basic requirements of kinematic
objects, a number of different languages and standards are examined. In particular, the
UniGrafix language and its time-varying script extension BUMP [19] are scrutinized, since
they are the underlying structure of the ASCII representation of a WALKTHRU model. In
addition, the interactive BUMP viewer, UGMovie [6], is analyzed as a mechanism for
scripting and also used as a testbed for performance analysis. These performance
measurements demonstrate a need to move toward a more powerful scripting mechanism.
Therefore, the GLIDE [13] scripting paradigm of generating and executing C code is
incorporated into the UniGrafix [7] language. Furthermore, a number of comparison

4

measurements are made between the new GLIDE-based system and the original BUMP
system.

2.) Modifying the WALKTHRU: The WALKTHRU parser and the database environment are
modified to mirror the changes performed in the above work done with BUMP and
UGMovie. The GLIDE paradigm of compiling C code and evaluating behavior functions is
incorporated into the WALKTHRU environment. The final system allows an object to be
concisely described in a UniGrafix file and a related C behavior function file and then added
to a WALKTHRU database. The generated C code is then linked into the WALKTHRU
viewing application, and the time-varying objects are bound to their updating functions.

3.) Creating Interaction Event Handlers: The notion of interaction in the WALKTHRU and in
WALKEDIT is explored through the development of two interaction event handlers. One
event handler links interior objects in the virtual environment to URL’s for World Wide Web
documents. This handler enables interactive selection of objects to display relevant
information in a standard Web browser. The other handler provides a generic mechanism for
associating an object with its interactive behavior functions, allowing a user’s mouse clicks
to interact with a kinematic object.

1.4 Report Organization

Section 2 reviews related work and discusses the previous WALKTHRU systems as well as
GLIDE, UniGrafix, and other 3D modeling languages. Sections 3-5 of this report are each
devoted to one of the three goals discussed above. Section 3 discusses the shift from a parsed
primitive scripting language used by the previous systems (BUMP, UGMovie and the
WALKTHRU) to using C as a scripting language. It details the modification of the UniGrafix
parser to incorporate the features developed in the GLIDE language. Section 4 explains the
limitations of the WALKTHRU system as well as the modifications made to the database and
parsing system necessary for the WALK-KIN extension. Section 5 examines the selection
mechanism and event handling elements of the WALKTHRU/WALKEDIT environment. This
section also examines the implementation of the two new event handling mechanisms developed
for the WALK-KIN extension, as well as providing a number of example interactive kinematic
objects created using this new extension. Section 6 discusses extensions to this work and other
related issues and Section 7 concludes this work.

5

2 Related Work

This section is divided into two main parts: an examination of 3D scene description languages
and previous work related to the WALKTHRU system. The first sub-section discusses
kinematic scene description languages used at Berkeley in the past (UniGrafix, BUMP, and
GLIDE) and general purpose 3D modeling standards (VRML 1.0/2.0 and Open Inventor). The
second sub-section covers related virtual reality research systems developed at Berkeley:
UGMovie, the WALKTHRU, WALKEDIT, and WALKTHRU-CFAST.

2.1 Kinematic Scene Description Languages

In this section a number of different scene description languages are examined. The focus here
is on a language’s facilities for specifying behaviors and interaction. In particular, we consider
the expressiveness of a language’s scripting system, and the generality and usefulness of its
interaction mechanism. In addition, we consider specific implementation issues for the various
languages and standards discussed.

2.1.1 UniGrafix and the BUMP Extensions

The UniGrafix [7] language is a scene description language capable of representing polyhedra as
well as non-manifold objects and piecewise linear wire segments. The original language is static
and does not support any form of time-varying values. In order to augment the language, an
extension package named BUMP (Berkeley UniGrafix Movie Package) [19] was developed.
BUMP extends the static UniGrafix language by providing a facility for substituting expressions
in the place of floating point values within particular statements. The scripting language for
these expressions is a subset of C’s math expression syntax. The scripting language allows for
simple math operations and provides a few math functions as well as a conditional construct, e.g.
the in-line if statement. The expressions themselves must appear within special BUMP
extension statements and must be delineated by dollar sign symbols.

The BUMP system is implemented as a modification to the static UniGrafix parser. The
modified parser contains new syntactic constructs, which are separated from the original
elements of UniGrafix by encapsulating them within parenthesis. Inside the parenthesis of these
extension statements time-varying elements of the scene can be defined and used. Some
examples of the extension statements provided by the BUMP package are: (mdefine…) ,
(mexecute…) , and (meval…) . The (mdefine…) construct enables motions to be defined while
the (mexecute…) expression allows external scripts to be invoked using the C function system .
For our purposes the (meval…) extension is of primary interest. Using (meval…) constructs an
author can use time-varying dollar sign expressions inside scene graph geometry and create
kinematically animated objects. See Figure 2 for an example of a moving triangle defined using
BUMP-extended UniGrafix. In the example the dollar sign expressions appearing in the v
statements represent time-varying values defining the vertices: v1 , v2 , and v3 that constitute the
face f1 . By using the time-varying values for the coordinate locations, the vertices move with
time and likewise the corresponding face moves and changes shape.

6

The BUMP system functions as a preprocessor and takes as input a BUMP extended UniGrafix
file (i.e., a file that contains dollar sign expressions encapsulated within BUMP extension
statements). BUMP then removes the time-varying statements and evaluates them using its
library of parsing and evaluation functions. The BUMP package also has an understanding of
variables that are created through the (vardef…) statement. Certain variables such as Time are
always defined and can be used to make time-varying objects. For each frame, the dollar sign
expressions within BUMP extension statements are evaluated and replaced by this computed
value producing a static set of frame specific values. Finally, the BUMP statement keywords
and parenthesis are removed from the file leaving only static UniGrafix statements. Thus, the
system effectively creates a series of snapshots, or static UniGrafix files, describing the scene for
evolving values of frame number and these snapshots can then be gathered together to form an
animation. Figure 2.1 demonstrates this process on an example scene containing a moving
triangle. The end result is a series of static UniGrafix files describing the scene for particular

Figure 2.1: Example of the BUMP systems animation of a time-varying UniGrafix file

Example BUMP Extended UG File

(vardef pos $t * 0.1$ 0 100);

(meval

def triangle ;

v v1 0.0 0.0 1.0 ;

v v2 0.0 $pos + 10.0$ 1.0 ;

v v3 15.0 0.0 1.0 ;

f f1 (v1 v2 v3) ;

end ;

i inst1 (triangle

 -rz $pos * -5.0$);

) ;

Static UG File at Time(t) = 180, pos = 18.0

def triangle ;

v v1 0.0 10.0 1.0 ;

v v2 0.0 28.0 1.0 ;

v v3 15.0 0.0 1.0 ;

f f1 (v1 v2 v3) ;

end ;

i inst1 (triangle -rz -27.25) ;

Static UG File at Time(t) = 0, pos = 0.0

def triangle ;

v v1 0.0 0.0 1.0 ;

v v2 0.0 10.0 1.0 ;

v v3 15.0 0.0 1.0 ;

f f1 (v1 v2 v3) ;

end ;

i inst1 (triangle -rz 0.0) ;

BUMP
Expression
Evaluation
Functions

v1 v3

v2

15.0

10.0
~18.0

Rendered Triangle at
Time(t) = 0, pos = 0.0

v1 v2

v3

28.0

15.0
~31.77

Rendered Triangle at
Time(t) = 180, pos = 18.0

v2

v3

v1

19.0

~24.2

15.0

…
…

7

values of the variable Time, which are ready to be parsed and rendered to produce an animation.
Since the output of BUMP is a series of static UniGrafix files, the rendering and animation of a
scene are completely separated and thus a simple static UniGrafix Scene viewer can be used to
display each frame of the animated scene.

The BUMP system of defining objects has three distinct disadvantages. First and foremost, the
system can be very slow to execute since it parses all of the time-varying expressions and outputs
a new static scene description every frame. Second, the scripting language for the time-varying
elements is only a subset of C’s mathematical expressions and thus it is not sufficiently
expressive to permit the creation of complex motion or behavior. Finally, this system of defining
expressions provides no facility for interaction: objects can not be constrained to move according
to a user’s mouse motions. Due to these limitations, the work done in building the WALK-KIN
extensions has replaced this parsed BUMP paradigm with a more efficient and powerful system
involving code generation and compilation.

There is, however, one important advantage to the BUMP system’s reliance on parsing the time-
varying expressions every frame. Due to the re-parsing, these time-varying expressions can be
altered interactively by the user and new expressions with new types of motion can be tested
directly without degradation in performance. The ability to redefine behavior while the system is
visualizing is significant since it augments the BUMP systems Interaction value.

2.1.2 The GLIDE Scene Description Language

The GLIDE (Graphics Language for Interactive Dynamic Environments)1 [13] scene description
language was an early attempt to overcome the limitations of the BUMP system and to develop a
better language for the creation of interactive kinematic objects and scenes. GLIDE is an
extension of a static scene description language, SDL [24], and was originally developed for an
undergraduate computer graphics class, primarily as a means for creating time-varying and
interactive scenes. The language utilizes C as the expression script for its kinematic elements.
Instead of parsing the expressions to evaluate them, GLIDE transforms an expression’s C code
into compiled functions. These compiled functions are then executed to update the time-varying
elements of the scene graph. The primary reason for using compiled code was performance: a
system that parses its expressions will take considerably longer to execute than one utilizing
compiled code. Like the BUMP system, GLIDE provides a series of variables for controlling the
time-varying nature of expressions. In particular, the frame number and the time since the
beginning of animation are represented as variables (FRAME and TIME). In addition, some
interactivity is provided through the variables MOUSE_X and MOUSE_Y; these represent the x and y
location of the mouse relative to the graphics window. Using these variables, scenes can be
created in which an object’s motion is coupled to the user’s mouse motion.

1 The GLIDE language semantics and syntax were originally created and implemented by Maryann Simmons and
Ajay Sreekanth.

8

The current implementation of GLIDE relies heavily on a two-pass parser. The time-varying
expressions for objects in the scene, which are C code fragments, are extracted from the scene
description file during a first pass of the parser and placed in a C code file. The first pass of the
parser outputs this C code file but does not actually build a scene graph. The output file contains
a single switch statement where each case element corresponds to a time-varying expression in
the original scene description file. In each of the case elements of the switch statement a piece
of C code is stored. A particular C code fragment is the updating function for a specific time-
varying statement. The switch statement is controlled by an ID variable that enables a time-
varying statement in the scene graph to find its updating function in the switch statement by
using its ID. Once the C code is generated, it must be compiled and linked into the actual
application, which will be animating the scene and its objects. The second pass of the parser is
the mechanism that actually builds the scene graph and is normally incorporated into a renderer
or other scene viewing application. In addition to a standard scene graph, the second pass parser
is responsible for associating a time-varying element with its correct updating function. The
current implementation achieves this by storing a generic function pointer corresponding to the
switch statement function with every time-varying element of the scene graph. During the
updating of the time-varying elements, a statement’s ID is passed as an argument to the
statement’s updating function. Since the case parameter (the ID for a time-varying statement)
depends on the parse order, statements must not be re-ordered between the first and second
phases of parsing.

The primary advantages gained by using the GLIDE system are the increased evaluation speed
and the more expressive scripting language. Since the expressions are preprocessed by the first
pass of the parser and converted into compiled code, we can save a considerable amount of CPU
time relative to a parsed system. As will be demonstrated later, the costs of parsing (relative to
simply executing expressions) can be quite significant, and these savings can dramatically
increase performance. Furthermore, the increase in expressiveness gained by using C as the
scripting language is quite significant. Using a system such as GLIDE, it is possible to embed
arbitrarily complex expressions within the kinematic scene, enabling very complex behaviors or
simulations.

There are also disadvantages to the GLIDE paradigm. First, we must parse the file twice and
create a C code file that must then be compiled into the application. This adds a considerable
amount of time to the initial viewing of a scene containing time-varying objects. In contrast to
BUMP, we are no longer able to interactively change the time-varying expressions for a given
value while a GLIDE renderer is executing. Due to the manner in which GLIDE implements the
parsing and conversion into C code, a viewer using GLIDE is unable to animate more than one
scene without re-linking new updating code. Finally, the very presence of C as the scripting
language presents two important pitfalls. First, the parser itself no longer determines whether the
syntax is correct but defers this checking to the compiler. Second, since the scripting language
now allows looping constructs and memory operations, a given scene’s kinematics may cause
execution errors, for example a segmentation fault or non-termination can occur.

9

2.1.3 Open Inventor and VRML

Unlike the previous systems described in this section, the 3D environment specifications VRML
[2,17] and Open Inventor [29] are not Berkeley specific. As of the writing of this report, VRML
2.0 has in fact become a standard for virtual reality modeling on the World Wide Web, and a
number of browsers have recently been developed for viewing VRML worlds. Open Inventor is
a 3D scene description language developed by Silicon Graphics. In addition to geometry
statements, Open Inventor contains elements for defining behaviors and interaction. The
fundamentals of Open Inventor were carried over more or less directly into VRML 1.0, which is
almost completely a subset of Open Inventor. VRML 2.0 is the successor to VRML 1.0 and
differs in many respects, most notably it contains time-varying elements. Furthermore, VRML
2.0 deviates considerably from Open Inventor’s mechanisms for time-varying objects, behaviors
and interaction.

Open Inventor

In contrast to the relatively simple languages discussed above, Open Inventor provides for both
interaction and behavior explicitly within the language syntax and semantics. Interaction in
Open Inventor is achieved through the presence and use of sensor, dragger, and manipulator
nodes in the scene graph. Sensor nodes sense the location of the user and act as interaction
mechanisms by allowing a user’s proximity to a given location to affect objects in the scene.
Similarly, dragger and manipulator nodes take direct input from the user in the form of mouse
events and transform them into values for use in the virtual environment. In all three cases
Connections (links between the fields of objects) are used to propagate the data through the
scene graph.

Open Inventor also provides a mechanism for behavior or function execution. Engines are
responsible for behaviors and consist of simple functions embedded within a scene graph object.
Engines may also be connected together via the connection mechanism and by combining
them, we can simulate some interesting behaviors. In addition to the simple predefined engines,
Open Inventor allows arbitrary math expressions to be defined using a simple math script much
like the BUMP syntax. Given this notion of interaction and the ability to generate time-varying
information using the engine framework, Open Inventor scenes can describe complex
interactive settings which can in general be much more interesting to the user then any BUMP
extended UniGrafix scene. It should be noted that the system of engines is not sufficiently
complicated to allow for iterative constructs or recursion and therefore these engine nodes do
not constitute a full programming language.

VRML

As a first attempt at defining a standard for virtual reality on the World Wide Web, the virtual
reality modeling community adopted a subset of Open Inventor and termed it VRML 1.0 (Virtual
Reality Modeling Language). For this first version, all of Open Inventor’s behavior and
interaction related elements were removed. In addition, many of the basic node groups: polygon

10

primitives, transformation types, and material properties were reduced to a bare minimum. The
resulting paired down version is an essentially static scene description language that contains two
extra Web related constructs. These extra constructs are the WWWanchor, a mechanism for
linking a piece of geometry with a URL, and the WWWinline, a mechanism for allowing scene
graph elements to reside at other locations on the World Wide Web.

Recently, the standard set forth by VRML 1.0 has been extended and augmented with interaction
mechanisms and behavior capabilities and has become VRML 2.0. VRML 2.0 is essentially a
time-varying interactive scene description language containing statement types for behaviors and
interaction. The revised language provides for time-varying interactive objects through the
addition of script nodes (used to create behaviors), interpolator nodes (used to create simple
kinematic animations) and sensor nodes (used to create interactive objects and to perform tasks
based upon the locations of elements or the value of time).

After studying the two time-varying standards, Open Inventor and VRML 2.0, it becomes clear
that they differ in their abilities to provide behaviors and interaction. On the one hand, Open
Inventor has a more general interaction system than VRML 2.0’s limited number of predefined
sensor/manipulator nodes. On the other hand, the script node mechanism of VRML 2.0 is
more powerful then the engine system used by Open Inventor. In VRML 2.0 script nodes
contain arbitrary scripts written in a subset of the scripting language JavaTM[15]. Since the subset
of JavaTM used is a full programming language, the complexity of possible behaviors is much
richer then the simple math syntax and function execution provided by Open Inventor engine

nodes. An obvious question is why not use one of these particular systems as the underlying
mechanism for this new work? The short answer is that it was too much effort to shift the whole
WALKTHRU project to use either of these standards, since the WALKTHRU system is so
heavily dependant on the underlying UniGrafix scene description language, for a further
discussion see Section 6.

2.2 Berkeley Visualization Systems

The following related systems were all developed at UC Berkeley. The first, UGMovie, is an
interactive scene viewer for the extended UniGrafix language. The other three systems are the
WALKTHRU and two extensions to the base system. The two extensions are WALKEDIT, a
3D environment editing extension, and WALKTHRU-CFAST, a combination of the
WALKTHRU and a fire simulator. These various systems are explored because of their direct
relevance to the new WALK-KIN extension developed as part of this report work.

2.2.1 A Kinematic Scene Viewer: UGMovie

The BUMP extension to UniGrafix augments the language and provides a means of producing
animations offline. UGMovie is an application for interactively viewing and potentially altering
these kinematic UniGrafix files. UGMovie[6] employs the BUMP library code to evaluate the
time-varying scenes and uses a simple GL renderer to display the results each frame. In addition,
UGMovie provides the capabilities for altering the expression strings interactively, allowing the

11

user to modify a kinematic scene while the application is running. This ability to modify time-
varying expressions interactively is useful during the initial creation and prototyping process of
building an animated scene. In addition, the ability to alter these behaviors while visualizing the
scene represents access to a whole new series of model parameters. Finally, in contrast to a
GLIDE-based system, UGMovie’s reliance on BUMP allows any properly defined kinematic
UniGrafix file to be loaded and viewed without additional work (i.e., there is no compilation step
necessary).

Since UGMovie is built using the BUMP library it inherits the same drawbacks of that language,
namely slow parsed time-varying expressions with a limited behavior capability. In addition,
UGMovie understands only a subset of the extended BUMP scene syntax. In particular, the new
escape statements provided by BUMP must be encapsulated within a definition statement in
UGMovie. This is more restrictive than the original BUMP parser which allows the new escape
statements to be placed at any location within the time-varying UniGrafix file.

2.2.2 The WALKTHRU System

The WALKTHRU is a system [11, 12, 27, 28] that allows a user to navigate inside a three
dimensional model of an architectural environment. The system provides the user with real-time
navigation of very large 3D models. One such 3D environment is the UniGrafix model of Soda
Hall, which is a relatively complete, furnished model of the Computer Science building at UC
Berkeley consisting of approximately 1.5 million polygons. The WALKTHRU represented a
significant research advancement since it enabled a user to navigate through a very large
geometric model in real-time. Since the system considers only potentially visible objects for
rendering (a superset of those actually visible), as long as the number of such objects is
reasonable for the machine, real-time performance can be guaranteed regardless of the actual
total model size. This system utilizes UniGrafix as its initial scene description format and builds
a database of scene elements from this file description. Given UniGrafix as the underlying
modeling language, the BUMP extended syntax is used for the few time-varying objects
appearing in the Soda Hall model. Like UGMovie, the WALKTHRU’s time-varying objects
inherit the same drawbacks as BUMP.

Rather than support the whole BUMP syntax, the WALKTHRU followed UGMovie and only
implemented a very small subset of the extended syntax. In fact only (meval…) constructs are
supported, and within these only time-varying instance statements are permitted. Since the
WALKTHRU’s parser only allows kinematic instance statements, some behaviors that are
supported by UGMovie, such as time-varying colors or vertices, can no longer be constructed.
This limitation represents a serious reduction in the behaviors available to the WALKTHRU’s
time-varying objects. In addition, the WALKTHRU environment does not allow behaviors to be
modified while the model is being visualized. Even more limiting, the alteration of any of the
underlying UniGrafix descriptions for WALKTHRU objects requires re-parsing the original and
rebuilding the database, which is a computationally expensive process.

12

2.2.3 The WALKEDIT System

The WALKEDIT system [4,5] represents an important addition to the original WALKTHRU
architecture. This program allows the user to interactively manipulate 3D objects in the
WALKTHRU’s virtual environment. It was developed primarily as an interactive modeling tool
that allows a user to position furniture within the virtual environment. Its main contribution is to
allow simple 2D mouse motions for placing furniture objects in the 3D virtual world. This
disambiguation of the 2D mouse motions into 3D virtual world motions is achieved through
object associations [4], whereby objects in the 3D world are constrained by associations to move
on various planar surfaces within the model. For instance, by default, a chair in an office stays
constrained to remain on the plane of the office floor. Similarly, a picture frame is constrained to
move in the plane of an office wall.

In addition to these static constraints, a given object’s constraint plane can change according to a
user’s mouse motions. In general, objects associate themselves with the appropriate constraint
plane that is currently visible to the user at the selected location (i.e., the one which is closest to
the user along a ray cast from the selection point into the model). Since the user, the object, or
both may move, the 2D constraint plane can change dynamically according to changes in
visibility. For example, a book will move from the floor to the top of a desk (i.e., change its
constraint plane from the floor to the desk) if the ray cast from the user into the model intersects
the desk plane before it intersects the floor plane. Similarly, if a book is dragged off of the edge
of a desk, it will drop to a horizontal surface directly below it, and this new surface will become
its constraint plane. The ability of the system to change constraint planes automatically is a big
benefit to the ease and speed of furnishing the virtual environment with content objects.

2.2.4 The WALKTHRU-CFAST Simulation Architecture

The major contribution of the WALKTHRU-CFAST [3] framework is the development of a
general architecture for connecting a visualization mechanism together with a simulation system.
This work combines the Consolidated Model of Fire and Smoke Transport (CFAST) [21]
developed by the National Institute of Standards and Technology’s (NIST) as a simulator and the
Berkeley WALKTHRU system as its visualization mechanism. The current system allows a user
to interactively observe the output of the fire simulation system CFAST from within the
WALKTHRU’s virtual environment. A user may navigate the halls of a building as the
simulator updates the environment, enabling the user to see the smoke and fire grow as a
function of time. The combination of these two systems allows CFAST’s fire simulation results
to be visualized within an actual 3D architectural context generated by the WALKTHRU:
making it possible for even a novice user to interpret the complicated results of the simulation.
In addition, the system provides the user with other methods of visualizing the data. Currently
the system includes two additional modes: a thermal vision mode, where heat levels are
displayed instead of the default smoke and fire scenes, and a toxicity gauge displaying the levels
of toxins in the air at the user’s present location.

13

The WALKTHRU-CFAST system suffers from one primary drawback: only the time parameter
of the simulation can be altered while the system is executing. Using interactive kinematic
objects we can provide access to another important model parameter: connectivity. The CFAST
simulation is governed by the connectivity of the various spaces of the virtual environment, this
controls the flow of heat, smoke and fire between the different cells of the simulation’s model.
By employing the mechanisms of the WALK-KIN extension we have created a new interactive
objects which directly controls the connectivity of the environment. This new object, the
interactive door, allows the user to interactively open and close portals connecting cells in the
environment. The future hope is that the developers of CFAST will provide an API to control
their simulation interactively and then it will simply be a mater of calling these simulation
control functions from within the behavior elements of the door. Thus, with this enhancement
the CFAST simulation could be altered interactively by manipulating the door object from within
the virtual environment. Such a link between interactive kinematic objects and the simulation is
a good example of why these objects are useful; they allow the user to affect the outcome of
complex simulations from within the virtual environment.

14

3 Kinematic Objects

In order to achieve the goal of fast and complex kinematics, we begin by modifying the existing
framework of the WALKTHRU to incorporate a new, more expressive language for its scripting
mechanism. Since the WALKTHRU system employs UniGrafix(UG) as its scene description
language and uses the BUMP extensions to implement its time-varying objects, we first analyzed
how these could be modified to achieve our goals. Given our desire for expressability, speed,
and interactivity, it became apparent that a system such as GLIDE, which uses compiled as
opposed to parsed code, would be more useful than the BUMP system. Therefore, we decided to
also study the addition of GLIDE-like capabilities to the UniGrafix scene description language.
In addition, we examine the related costs and benefits of utilizing a compiled code updating
system versus a parsed system. The results of these performance measurements prompted the
incorporation of the new GLIDE-like scripting mechanism into the WALKTHRU environment;
this incorporation will be discussed in Section 4.

3.1 Adding Complex Kinematics to UniGrafix

As a first attempt at merging the GLIDE paradigm with the UG environment, we modified the
UGMovie program, which is a display engine for time-varying UniGrafix scenes. This
application was chosen to demonstrate the feasibility and the performance increases we could
obtain by moving from the old interpreted scheme to a new compiled code paradigm. Two
separate alterations to the UGMovie application were necessary for it to make use of compiled C
code rather than parsed expressions. First, the original UniGrafix parser had to be modified to
operate in a two pass fashion, the first pass producing the C code for time-varying statements and
the second pass actually building an augmented scene graph in which kinematic objects have a
link to their updating functions. Second, the UGMovie application’s previous time-varying
expression updating code had to be modified to use these new C code function calls instead of
the BUMP library parsing and evaluation routines.

3.1.1 Modifying the UniGrafix Parser

In the original BUMP scheme, the time-varying expressions were parsed and evaluated every
frame. In contrast, we convert these expressions into compiled code and simply reference them
in order to avoid re-parsing. In order to adopt this compiled code paradigm we modified the
UniGrafix parser in four separate ways:

1.) A new C code outputting mode of the parser was created

2.) An augmented scene graph was incorporated into the separate second pass parser

3.) A time-varying statement expression list was constructed

4.) All of the BUMP extension package language elements were removed

15

Figure 3.1: Example of C code produced from an extended UniGrafix file by the first pass of the new parser,
arrows show UniGrafix statement--C code correspondence. See Appendix A for the formal definition of the new
extended UniGrafix language format.

Input: example scene of a moving triangle
in the new extended UniGrafix file format

vardef pos $ float $ $ pos = Time * 0.1 $;

def triangle ;

v v1 $ pos + 3.0 $ 10.0 1.0 ;

v v2 $ pos * -2.0 $ 0.0 1.0 ;

v v3 15.0 $ -2.0 * pos $ 1.0 ;

f f1 (v1 v2 v3) ;

end ;

i inst1 (triangle -rz $ pos * -5.0 $) ;

Output: generated by first pass parser based on input,
this is the output C code file, ug.dynam.c

/* User Defined Global Variables */
float pos;

/* Update function for Global Variables */
void update_global_variables (void) {
Time = Time + 1;
pos = (float)(Time * 0.1);
}

/* Main Time-Varying Expression Updating Function */
void UG_DYNAM_FUNC0(int which, float *floatval){

switch(which) {
case 1:

floatval[0] = (float)(pos + 3.0);
floatval[1] = (float)(10.0);
floatval[2] = (float)(1.0);
break;

case 2:
floatval[0] = (float)(pos * -2.0);
…

case 3:
floatval[0] = (float)(15.0);
floatval[1] = (float)(-2.0 * pos);
…

case4:
floatval[0] = (float)(pos * -5.0);
floatval[1] = 0.0;
floatval[2] = 0.0;

}
}

The GLIDE scene description language relies on a two-pass parser and this heavily influenced
the design decisions involved in the new UniGrafix two-pass parser. In accordance with
GLIDE's system, the new UG parser exists in two different forms. One of the parser’s modes
only emits C code, while the other builds the scene graph and the time-varying expression list.

Creating a C Code Output Parser

The mechanism employed for generating the output C code file based on an input UG file is
similar to the system used by GLIDE. The time-varying expressions in the UG file are written
out to another file called ug.dynam.c. Since these expressions are found in the original UG file
and then written to the C file without modification, there is an implicit requirement that the
syntax of the time-varying expressions in the UG file be valid C expression syntax.

16

As a concrete example, see Figure 3.1, which demonstrates the operation of the first pass of the
parser on a kinematic scene containing a moving triangle. In practice, the parser goes through
the same steps when building the C code file as it would in building the scene graph, however,
static statements are simply ignored with respect to outputting code (the face statement in the
example of Figure 3.1 is static and does not effect the generated C code).

The structure of the output C code file follows the same form used by GLIDE. A single function
called UG_DYNAM_FUNC0 comprises most of the file and contains a single switch statement.
Each time-varying statement appearing in the original UG file corresponds to one of the cases
present in this switch statement (the arrows in Figure 3.1 demonstrate the correspondence
between UniGrafix statements and generated C code). A time-varying statement’s updating
code, the C code encapsulated by its dollar sign expression, is copied into one of the cases of this
switch function. All of the cases of this switch statement are referenced by a number that
corresponds to the parse order of the time-varying statements appearing in the original file (this
number corresponds to the which variable in the example of Figure 3.1). The careful reader will
also note that all values are returned in the floatval variable. For the case of vector values this
is reasonable, but for instances which return only one value the same mechanism is used in order
to decrease the number of calling arguments to this generic function. Thus, for single valued
elements such as instances the first floating point element of floatval is used to return the
calculated time-varying value. During the second pass of the parser this number will be
associated with the object in the scene graph, giving access to the object’s particular updating
code. Parsing the original UG file to create C code and then re-ordering time-varying elements
of the file will result in undefined behavior since the time-varying statements are linked
according to the parse order, and the original order is not stored with the output UniGrafix file.

Under the new system, all of the floating point values in vertex, color, and instance
statements can now be replaced directly with dollar sign expressions. In order to achieve this
simplification in syntax, a new type of time-varying floating point object was added to the
UniGrafix parser. These kinematic floating point objects store three quantities: a default value, a
floating point number, and a generic updating function. In addition, each time-varying
expression stores a decision variable that references particular code within the generic updating
function. An object’s generic updating function is simply a pointer to a large case statement, the
one shown in ug.dynam.c Figure 3.1. In addition, the decision variable stored with each time-
varying expression allows the actual piece of updating code to be found within the generic
updating function. See the direct correspondence between dollar sign C code fragments and the
particular case statements generated in the conversion shown in Figure 3.1. The new object is
treated like the other parser objects, and it is passed around as a floating point value. Finally,
these time-varying floating point objects are linked into the UniGrafix scene graph and are
updated using the stored generic function pointer and the case statement value. Both the first and
second pass of the new UniGrafix parser uses these kinematic floating point objects.

The Augmented Scene Graph Structure

The second pass parser builds the scene graph and creates a linked list of all time-varying

17

statements. See Figure 3.2 for an example of the statement list created for the example scene of
the moving triangle. Now instead of outputting C code for a time-varying value, the second pass
of the parser links the object in the scene graph to the compiled code via an auxiliary pointer.
This pointer in the data structure of the scene graph statement serves two purposes: it tells us
whether a statement is time-varying or static, and it also provides us with a link to the updating
function necessary to obtain a new value for each successive frame.

The Time-Varying Expression Statement List

For the purposes of performance analysis a data structure similar to one used by the GLIDE
system is incorporated into this second pass parser. The data structure is a list of all of the time-
varying statements in the UG file, separated by type (see Figure 3.2 for an example). The
creation of such a structure allows us to run through and update only these statements without
having to search for them in the scene graph. Clearly, the rendering engine could have been
modified to check and see if the statement was in fact time-varying and then simply update it
before rendering. Doing so, however, would have complicated the performance measurements
because the updating phase and the rendering phase would now be intermingled. Instead, by
using this scheme, we achieve complete separation between updating and rendering and also
save time by not having to traverse the whole scene graph during updating.

For each element of the time-varying statement list, we store a pointer to the updating function
(the switch statement), the case number to which this particular statement refers, and a pointer
to the actual UG statement structure (scene graph element). In order to update the time-varying
elements of a file, we simply traverse this statement list, and for each statement we evaluate the
updating function and place the returned values directly into the stored scene graph element.
Since the order of traversal is important, we initially partition the statements by type. In the case
of time-varying instance statements, it is necessary to update all of their time-varying transforms
before they themselves are considered. Therefore, transform statements are processed first, and
then the updating of instances simply involves recalculating their composite matrix, since they
do not contain an explicit updating function. The order of traversal of the other elements is
currently arbitrary since the updating of such statements can be performed independently.

Removal of the BUMP Syntax

In the BUMP system the extension statements are delineated by parenthesis for easy removal and
updating purposes. Rather than keeping these syntactic elements, the extension system is simply
removed and replaced with a GLIDE-like system in which any floating point value in a
supported statement type can be replaced with a time varying expression encapsulated in dollar
sign characters. In addition, all of the other elements of BUMP are also omitted; gone from the
new system are the (mdefine…) and (mexecute…) statements as are the various move

commands. Although these constructs are no longer present, the abilities of these various
commands can now be directly implemented in the C code of the time-varying expressions.
Functions for performing the interpolation can be written in C and included in the UniGrafix file,
and the (mexecute…) command can be simulated using the C function system .

18

Advantages and Disadvantages of the New Parser

One of the added benefits of using this system is that the contents of a dollar sign expression are
no longer limited to the small subset of C math expressions BUMP supported. Now the contents
of a dollar sign expression can be any valid piece of C code, which results in much greater
expressiveness. Furthermore, dollar sign expressions can now contain functions that return
floating point values. Using these functions, complex decisions can now be performed, thereby
allowing arbitrarily complex behavior to be simulated in an external C file and referenced by
geometry in a time-varying UG file. The syntax of this new GLIDE-like UniGrafix is presented
in Appendix A: New Syntax for Time-Varying UniGrafix.

Given that we gain a considerable amount of flexibility and expressiveness by using C as the
scripting language for these kinematic elements, what new things can we achieve employing
such a system? Clearly, simple time-varying expressions of the form used in the original
UGMovie files (such as old_cubogear.ug in Appendix B) can easily be mapped into this new
system (see the file new_cubogear.ug in Appendix B). In addition we can make use of the
ability to execute arbitrary C functions to return the floating point values for dollar sign
expressions. This allows a conciseness in the writing of kinematic UG files that was previously
only realizable using a preprocessor (see these examples original_jug.ug, post_cpp_jug.ug,

Figure 3.2: Scene Graph and Time-Varying Expression list created by the second pass parser. Structures based on
the moving triangle scene of Figure 3.1. The dashed arrows indicate correspondence between the time-varying
updating functions and the relevant kinematic values appearing in the scene graph.

Extended UniGrafix Scene Graph Structure

Type: Vertex
Name: v1
Value: kinematic_value

Type: Vertex
Name: v2
Value: kinematic_value

Type: Rotation in Z
Name: tform1
Value: kinematic_value

Type: Definition
Name: triangle
Face List

Type: Instance
Name: inst1
Definition Poitner
Transformation List

Type: Color
Name: c1
Value: kinematic_value

Type: Face
Name: f1
 Color Pointer
 Vertex List

Time-Varying Expression Lists

 NULL
ID: tv-inst-1
Name: inst1
No Update Function

Time-Varying
Instances

 NULL
Time-Varying
Transformations

ID: tv-trans-1
Name: tform1
Update Function: ID4

 NULLTime-Varying
Vertices

ID: tv-vert-1
Name: v1
Update Function: ID1

ID: tv-vert-2
Name: v2
Update Function: ID2

 NULL
ID: tv-color-1
Name: c1
Update Function: ID3

Time-Varying
Colors

19

and new_jug.ug in Appendix B). Aside from ease of use, the new paradigm allows for
previously unrealizable complexity in the simulation model governing the behavior of objects.
The file grav.ug and the related C file grav.c are an example of a simulation governing scene
geometry. In the UniGrafix file the geometry makes references to a C function which returns the
particular coordinates of a simulation object. The simulation (in this case four bodies obeying a
gravity-like set of attractive forces) is actually performed in the C file and governs the movement
of the scene’s elements. The files are included in Appendix B. The primitive scripting language
of the original BUMP extension does not permit a scene of such complexity to be created.

Since the new parser is based so closely on the GLIDE parser and compiled code system, it
inherits all of its shortcomings and disadvantages. Namely, those mentioned in Section 2.1.2: the
input file is parsed twice, the inability to interactively alter the scene’s objects, the new parser no
longer verifies input, and the scripting language provides two potential pitfalls (non-termination
and potential pointer errors, i.e. segmentation faults and illegal de-referencing). The most
important of these disadvantages are the potential pitfalls of the scripting language and the
inability to alter scene objects interactively. The scripting language dangers can be removed by
using a different scripting language such as JavaTM [15] or VRMLscript [2,17], while interactivity
can be enabled by incorporating dynamic linking of code libraries.

3.1.2 Modifications to the UGMovie Application

Once the parser was modified, three other modifications were necessary to update the UGMovie
application to use the new syntax and compiled code paradigm for time-varying objects:

1.) All of the BUMP extension package function calls were removed from UGMovie

2.) The new UniGrafix parser was incorporated into UGMovie

3.) The first pass parser was encapsulated into an executable

These modifications were necessary to move from the parsed domain of BUMP into a
completely compiled code system for updating time-varying objects. The current UGMovie
application runs under SGI’s IRIX operating system version 4.0.5.

Removal of the BUMP Extension Elements from UGMovie

First, all of the BUMP function calls were removed from the UGMovie application. In
particular, the time-varying statement updating routines, the initialization routines, and the user
interaction elements have all been modified. This has two primary effects on the UGMovie
application. On the one hand, this greatly reduces the number of file input/output demands
relative to the BUMP system and improves the overall performance. On the other hand, the
BUMP features providing variable editing and behavior redefinition while visualizing the scene
are no longer present. Originally, UGMovie achieved the updating of kinematic objects by
removing all of the (meval…) type constructs (all information between the parenthesis) and
writing these to temporary files and then evaluating these expressions using the BUMP function

20

calls. The BUMP function calls then returned a static UniGrafix file that was spliced into the
actual scene graph. These file input/output operations were performed every frame and caused a
considerable portion of the performance problems. In addition, since the cost of re-parsing and
evaluation is a function of expression length, UGMovie restricts the syntax to allow (meval…)

statements within def /end pairs only. This allows the (meval…) expressions to be removed and
re-parsed easily without requiring a re-parsing of the whole UniGrafix file.

Incorporating the New UniGrafix Parser

Next, the new UniGrafix parser was incorporated into the UGMovie program, thereby allowing
this application to parse the new time-varying UG file syntax. In addition, since the new parser
builds a new data structure, the time-varying statement list discussed previously, a traversal
mechanism for this list was added to the UGMovie application in the place of the original BUMP
evaluation functions. Trace information of the UGMovie executable demonstrates performance
problems precisely because of this constant expression re-parsing and evaluation. In contrast the
new updating scheme using the traversal mechanism and the compiled code paradigm removes
this re-parsing and improves the performance of the application by a factor of 2.8 to 10.0
depending on the graphics intensity of the scene file.

Creation of a Stand-alone First Pass Parser

Finally, a relatively simple wrapper program was written to encapsulate one version of the new
UniGrafix parser set to produce time-varying expression C code as output. As mentioned
previously, the new UniGrafix parser exists in two distinct modes. The first produces C code
from a UniGrafix file, which contains time-varying statements, and does not build an explicit
scene graph data structure. The second does not produce any code but rather builds a scene
graph and a time-varying statement list based on the input file. The former version of the parser
now appears in a new wrapper executable called dynUG, while the later is incorporated into the
new UGMovie application as the file parser. This new program, dynUG, takes a time-varying UG
file using the new syntax as input and produces the ug.dynam.c file as output (for an example
ug.dynam.c file see Appendix B). The output C code file (ug.dynam.c) must be compiled and
linked into the new UGMovie application in order to view the time-varying UG file using this
new viewing application. Under the current scheme, the new UGMovie executable must be
recompiled in order to alter the time-varying expressions of a particular file, or to load in a
different time-varying scene. Finally, a script has been written which allows the new UniGrafix
scenes to be viewed easily using the new UGMovie. The script performs the necessary parsing,
linking, and compilation, as well as loading the file into the new UGMovie executable (see
Appendix C:1 for the location of this script and its tutorial). The current script and executable
operates under version IRIX 4.0.5 of the operating system.

 3.2 Dynamic Linking

The recompilation step of the new UGMovie executable, or for that matter GLIDE, is not strictly
necessary. Using the dynamic linking functions provided by Silicon Graphic’s IRIX operating

21

system versions 5 and later, it is possible to augment the current system to allow arbitrary scene
files to be loaded by the UGMovie application without the need for re-compilation. The
incorporation of dynamic linking has not been done yet due to operating system
incompatibilities, but outlined below are the necessary elements required. Currently, the new
UGMovie application compiles under IRIX 4.0.5 and the necessary dynamic linking features
require versions 5.x or later of the operating system. In order for UGMovie to recompile under
the newer versions of IRIX the Motif [10] user interface must be upgraded or the entire interface
replaced by a different widget package such as TCL/TK [20] which will compile under the new
versions of IRIX. Once the UGMovie application’s user interface is upgraded, the addition of
the dynamic linking capabilities is a relatively small task, however the upgrading of the interface
could take a considerable amount of time. The use of dynamic linking is important. It enhances
the compiled code paradigm making it much more interactive. As discussed in Sections 1 and 2,
this is an improvement within the virtual reality taxonomy system [30] and to the concept of
Interaction discussed there.

In order to achieve dynamic linking in UGMovie, we would only need to add a mechanism for
associating a shared library with a particular input file. The dynUG parser could be modified to
produce a shared dynamic link library instead of a piece of C code. We could then use the name
of the dynamic file as a mechanism for creating the shared library. For example, the
octabug.ug file when parsed and analyzed by a new dynamic linking dynUG would produce a
shared library called liboctabug.so instead of the C code file. The UGMovie application
would then make use of this liboctabug.so and obtain access to all of the time-varying
expressions referenced in the UniGrafix file octabug.ug.

Having altered the first pass parser dynUG, now the actual UGMovie application would also need
to be modified to make use of certain dynamic linking functions specific to the IRIX operating
system. The two relevant functions are dlopen [8] and dlsym [9]. Under this scheme, when a
file is loaded into the application, a call to the function dlopen, which loads a dynamic link
library, would be performed. This function takes the name of a shared library as its argument
(from above the name would be based on the input UniGrafix file). As the UniGrafix parser
built the loaded file’s scene graph, we would perform a lookup on any referenced functions to
find them in the dynamic link library. The lookup function dlsym would be used with a
function’s name as its argument; it returns a function pointer corresponding to the named
function in the dynamic link library. Once we have the function pointer, we can simply
substitute this pointer into the time-varying statement list element for that particular statement.
Having done this, updating proceeds normally since the correct function pointer has been added
to all of the time-varying statements in the scene graph. Given this capability, the UGMovie
application could load any valid UG file without being re-compiled. In addition, by using such a
framework, we are now able to interactively alter the code bound to a given statement while the
application is running. In order to achieve real interactivity, the code would need to be in the
original shared library, but if the user were willing to wait for a new shared library to be created,
then any arbitrary code could be added to a scene’s objects without exiting the application. The

22

overall performance effect of this scheme would be a slightly longer loading time and perhaps a
longer access time to run a particular function in the shared library.

3.3 Performance Results

In order to analyze the performance differences between the old method employed by the BUMP
extension package and the new GLIDE paradigm applied to UGMovie, we have used a number
of profiling and timing tools to compare the two methods. Instead of simply reporting the
increases in frame rate obtained by using the new paradigm, we also estimate the improvements
in performance and determine the absolute possible speed for the given test animations, if the
expression updating took no computation time. We do this in order to gauge the success of our
shift from the old parsed system to the new compiled system and also to determine how well the
new system works in absolute terms.

3.3.1 Analysis of Pixie and Prof Trace Data

Since the graphics and rendering capabilities of UGMovie remain unaltered by our
modifications, an obvious choice of analysis/measurement tools is the UNIX profiling utilities
pixie [22] and prof [23]. These utilities generate instruction trace information and return
statistics on the number of cycles executed for all of the functions in the traced executable. For
the purposes of comparison, all of the various measurements were performed on both
executables animating the same series of five test files. All of the test files exist in both formats,
the original BUMP enhanced UG syntax and the new syntax developed for the compiled
paradigm. The test files used for comparison purposes all describe relatively simple time-
varying objects such as moving sculptures. These animated objects were chosen since they are
all elements in the WALKTHRU and they have different graphics complexities as well as
different behavioral complexities. All of the performance tests described in this section were
executed using one processor of a 33MHz SGI VGX machine (R2000A/R3000 CPU and
R2010A/R3010 FPU) with 4 Mbytes texture memory and 128 Mbytes of main memory.

The primary hypothesis made before performing these measurements was that under the new
paradigm the updating of time-varying expressions would take almost no computation relative to
the old parsed method. Therefore, since the rendering of the geometry is unaffected by this new
system of updating, we should be able to estimate the improvement in speed of the animation by
simply removing the cost of updating time-varying expressions from the original parsed system.
This idea was used to analyze the trace information obtained using the UNIX profilers pixie and
prof . In Table 3.3 we present information relevant to the test files. In particular, we present
estimates of the percent of cycles used to update the time-varying expressions and compare them
to actual measurements of the updating costs for the old parsed system of evaluation. From
Table 3.3 we see that the percentage spent updating is related to the amount of information to be
parsed as well as the geometric complexity of the scene. For scenes where the amount of parsing
is small relative to the geometric complexity (Cubogear), we notice the percent of total
computation spent on parsing is correspondingly smaller than scenes where the opposite is true
(Spheres).

23

MODEL NAME

1

MEVAL
CHARACTERS

2

SCENE
POLYGONS

3

ESTIMATED PERCENT
SPENT UPDATING2

4

MEASURED PERCENT
SPENT UPDATING3

Spheres 9362 61 95.5 % 95.8 %

Canaries 9362 982 79.3 % 79.5 %

Octabug 4512 128 91.8 % 91.3 %

Hingebug 4896 544 83.7 % 85.5 %

Cubogear 1569 3002 31.1 % 35.5 %

Table 3.3: Characteristics of time-varying UniGrafix test animation files for the parsed system.

In Table 3.3 the estimated percentage column (col 3) represents the percent of the total
computation performed updating the time-varying expressions using the original application.
These estimates were obtained by analyzing the trace information and removing cycles caused
by functions responsible for this updating. The functions removed from the total cycle count fall
into three related categories. First, those functions responsible for parsing and evaluating the
time-varying expressions were removed (BP_yyparse, BP_yylex, Bpmeval, UGfind_ref,
UG_yylook, and UG_yyparse). Second, various string related functions and file input/output
functions were removed (strcpy, strlen, strrchr, _atod, _atof, input, and
_doprnt). These string functions were used by functions in the first category and by other
auxiliary functions too numerous and computationally insignificant to merit removal themselves.
Finally, the memory behavior differs significantly between the parsed and the compiled code
systems and thus the cycles contributed by the malloc function needed to be dealt with
separately. Since a good portion of the cycles executed by malloc are caused by the Motif
interaction code, which is shared by both versions of the application, it was necessary to keep
track of these counts, since they have nothing to do with the expression updating. Therefore,
malloc was not simply removed from the old system count data but rather only the difference
between the new system’s malloc data and the old system’s was removed. This difference
corresponded to the amount of improvement between the two different system’s memory
behavior.

Once the total number of cycles was determined, we could estimate the percent of cycles actually
spent doing the updating relative to the total number of cycles executed. This estimate appears
in column 3. Finally, we determined the real improvement by simply tracing the new system and

2 The values in this column are estimated from the original parsed system trace information.

3 The values in this column are measured from the new parsed system using timing tools.

24

comparing its total number of cycles executed versus the total executed in the original
application using the old system. Our fundamental assumption is that the new system will
remove precisely these labeled function calls and its memory performance will be improved
relative to the original system. Due to the close agreement between columns 3 and 4 we are
confident that the labeling of elements was correct and that new system removes these elements
and improves the memory behavior by the amount estimated.

Based on the percentages measured and listed in Table 3.3, we are now able to estimate the total
number of cycles that the new system ought to execute, if our assumption that the primary cost of
updating in the original is completely removed from the cycle counts. Table 3.4 provides this
cycle count information. The first column lists the original application’s cycles executed for 600
frame runs of the various test file animations. The estimated column (col 2) is simply the
product of the original and one minus the measured percentage (col 4) found in Table 3.3. In
addition, the new application was also traced using the profiling tools; and the actual cycle
measurements obtained are reported in column 3. We note that there is close agreement between
our estimates of the total number of cycles executed (col 2) and the total cycles actually
measured (col 3). The last column (col 4) reports the actual improvement in frame rate that we
expect to see if the cycle times measured are directly related to an animation’s frame rate.

TOTAL NUMBER OF CYCLES (millions of cycles)

MODEL
NAME

1

MEASURED OLD
SYSTEM

2

ESTIMATED NEW
SYSTEM

3

MEASURED NEW
SYSTEM

4

EXPECTED SPEEDUP
FACTOR BASED ON
TRACE/PROFILING
MEASUREMENTS

Spheres 1601 72 68 20.0

Canaries 2037 422 419 5.0

Octabug 1749 144 152 12.0

Hingebug 2168 352 315 6.0

Cubogear 2066 1423 1333 1.5

Table 3.4: Trace measurements for 600 frames of test animations.

In order to obtain frame rate measurements for the animations, it is necessary to convert from the
cycle domain into the time domain. As a first attempt, the cycles themselves were translated into
time based on the 33 MHz processor speed of our test machine. These results do not match the
observed time since the timing measurements were actually preformed in multi-user mode. Due
to this complication, the actual execution times were used, and the estimates for the new systems
execution time were derived using the percentages of Table 3.3, in exactly the same way they
were used to determine the estimates of Table 3.4. The old system’s measured execution time
(col 1), and an estimate (col 3) and measurement (col 4) of the new system’s execution time are

25

reported in Table 3.5. All time measurements were performed using 600 frame animations of the
test files. The reader will notice that the agreement between the results when mapped to the time
domain is not nearly as good as in Table 3.4. After seeing these results it became clear that the
profiling tools were not modeling the execution accurately enough for these purposes. Based on
this complication we attempted to utilize another profiling tool glprof [14], which is an SGI
specific application. The glprof profiling tool is capable of simulating the graphics pipeline and
after analyzing traces for these test files it became clear that this is not the case for the other tools
pixie and prof. Thus, the original trace measurements are not accurately modeling the
performance behavior of the new system since its limiting factor is the graphics pipeline.
However using the glprof tool alone was not possible, since it does not accurately model an
application’s use of the CPU, and therefore it would give erroneous results for the original parsed
system. Caught between these two limitations we decided to move to a new simpler system of
measurement, which does not use cycle count information at all.

MODEL NAME

1

MEASURED
EXECUTION TIME
FOR OLD SYSTEM

(sec)

2

PERCENT OF
CYCLES
SPENT

UPDATING

3

EXPECTED
EXECUTION TIME
FOR NEW SYSTEM

(sec)

4

MEASURED
EXECUTION TIME
FOR NEW SYSTEM

(sec)

Spheres 100 95.8 % 4 10

Canaries 128 79.5 % 26 30

Octabug 146 91.3 % 13 20

Hingebug 150 85.5 % 22 22

Cubogear 167 35.5 % 108 60

Table 3.5: Comparison of expected time versus measured time.

3.3.2 Analysis of Time Measurements

The new measurements are based on modifying the actual applications and on decoupling the
rendering of the animations from the actual updating of the time-varying expressions. In order to
achieve this, both the old UGMovie application and the new one were modified to run in three
separate modes: normal mode, rendering only mode, and updating expressions only mode. By
running the application in updating only mode, we could obtain a reasonable estimate on the time
of execution for just the updating and not the rendering portion of the animation. In addition,
running the application in render only mode gives a measurement of the static complexity of the
scene, which was then used as a baseline to compare against the rendering cost of an animation.
These measurements are shown in Table 3.6.

26

ORIGINAL SYSTEM NEW SYSTEM

MODEL
NAME

1

MEASURED
TOTAL
TIME

2

MEASURED
TIME

UPDATING

3

MEASURED
TIME

RENDERING

4

MEASURED
TIME

UPDATING

5

EXPECTED
TOTAL
TIME

6

MEASURED
TOTAL
TIME

Spheres 100 91 10.0 3.4 12.4 10.0

Canaries 128 101 30.0 3.5 30.5 30.2

Octabug 146 132 10.1 8.9 22.9 20.0

Hingebug 150 133 20.1 9.1 26.1 22.4

Cubogear 167 107 60.0 6.3 66.3 60.0

Table 3.6: Measurements (in seconds) for estimating the total time for the new system.

The first column of Table 3.6 contains the total time measured for a 600 frame animation of the
specified test file using the original UGMovie system. The second column contains the total
execution time for the application run in update only mode, so no animation was actually
rendered for these test cases. From the first two columns we can estimate the time spent
rendering the scene by simply taking the difference between the total cost and the updating cost.
When we compare this calculated estimate for time with the measured execution time of the
application (run in display only mode, column 3), we find in all five cases that there is very close
agreement. The fourth column contains the execution time values for the new system running in
update only mode. The estimate of the total execution time for the new system running in the
full mode is presented in column 5. The values presented in column 5 are simply the sum of
column four with the difference between columns one and two. Finally, the actual measurements
for the new system running in the full mode are presented in column 6 of Table 3.6.

One important observation from Table 3.6 is that while the relative improvements in updating
execution time between just columns 2 and 4 are rather large, the actual difference between the
total execution times, columns 1 and 5, is not as substantial. Consider the Cubogear case in
which the original updating cost was 107 seconds and the new cost is 6.3 seconds, these
measurements alone would suggest a speedup in frame rate of almost 17 times. However, the
actual final estimate is much less dramatic with the difference being only about a factor of 2.5.
The disparity between these results occurs because in a rich scene such as the Cubogear the
rendering aspect of the scene, as opposed to its simulation, dominates the display cost. Recall
that the modifications made to the application do not effect the rendering of the scene.

27

MODEL
NAME

1

MEASURED
FRAME RATE

FOR ORIGINAL
SYSTEM

2

EXPECTED
FRAME RATE
FOR NEW
SYSTEM

3

COMPUTED
ABSOLUTE

RENDER-BOUND
FRAME RATE

4

MEASURED
FRAME RATE
FOR NEW
SYSTEM

5

IMPROVEMENT
FACTOR BETWEEN
OLD AND NEW

SYSTEM

Spheres 6.0 48.4 66.7 60.0 10.0

Canaries 4.7 19.7 22.2 19.9 4.2

Octabug 4.1 26.2 42.9 30.0 7.3

Hingebug 4.0 23.0 35.3 26.8 6.7

Cubogear 3.6 9.2 10.2 10.0 2.8

Table 3.7: Comparison of expected, absolute and measured frame rates (frames per second).

Table 3.7 summarizes all of the relevant frame rates for an easy comparison of estimated and
measured performance for the two systems. Columns 1 through 4 represent the frame rates both
measured and estimated. The values in column 1 were obtained by dividing the total number of
frames (600) by the values in column 1 of Table 3.6. Similarly, the number of frames (600)
divided by the values of column 5 of Table 3.6 generate those in column 2, and finally 600
divided by the difference between columns 1 and 2 of Table 3.6 yields column 3. Conceptually,
the third column represents the maximum possible frame rate given the current renderer if no
other processing is performed, i.e., if the updating of time-varying expressions and geometry
took no computation or matrix operations. Finally, the improvement factor represents the ratio
of new measured frame rates versus the old system’s frame rates for the given test files.

3.3.3 Comparison of the Performance Measurements

Comparing the estimated with the measured frame rates in Table 3.7 (columns 2 and 4) we find
strong agreement between the values. Furthermore, we note that the measured system (col 4)
always performs better than our estimate of performance (col 2). Since the estimates did not
account for the SGI graphics pipeline, the use of such a system actually yields a performance
improvement because the updating of time-varying expressions, which is primarily CPU driven,
can be executed concurrently with various graphics operations.

Next we turn our attention to the real question; how much did the new system improve relative to
the original? From Table 3.7 we can clearly see a marked improvement between columns 1 and
4 as represented by the improvement factor listed in the last column. Clearly, the new system is
considerably faster than the original; we see, for example, a factor of 10 speedup in the Spheres

case. Since our main goal was to speed up the updating of time varying elements in the scene we
should see how the new system compares to the fastest possible rendering of the scene assuming
no update costs. By comparing columns 3 and 4 of Table 3.7 we note that for three out of the

28

five cases we are very close to being completely dominated by the rendering time. In the other
two cases (Octabug and Hingebug) we achieve a slower frame rate because the complexity of
the updating is relatively high compared to the rendering cost. The primary problem with these
two files is the number of time-varying instances and transforms relative to the static scene
complexity. The computation of the updating functions and the multiplication of transform
matrices become a significant element of the total cost in these two cases. In contrast to these
two models, in the Cubogear scene the limiting performance factor is rendering time. This
suggests that in order to obtain the best relative performance out of our system we should try to
balance rendering complexity and updating complexity, thereby keeping both the rendering
pipeline and the updating processor busy most of the time.

29

4 The WALKTHRU Authoring Environment for Kinematic Objects

In virtual reality systems, time-varying objects provide interesting elements for a user to interact
with. The virtual environment as a whole seems more real when clocks keep time and trees sway
in the wind. For these reasons, numerous present day systems and standards incorporate time-
varying elements into their environments. In particular, the WALKTHRU system has been
enhanced by using the BUMP extended syntax to incorporate primitive kinematic objects into its
virtual reality environment. We abandon the BUMP system because of its limited expressibility
and because of the performance penalties discussed in Section 3, and we adopt a GLIDE-based
system instead.

A new GLIDE-like parser has been incorporated into the WALKTHRU’s model building
utilities. The WALKTHRU’s updating and evaluation functions have been modified to handle
the new compiled code object types. In addition, the authoring environment and the display
routines have been altered to allow the WALKEDIT package to be used as an interaction
mechanism with these new kinematic objects. At the end of the section we present some
examples of new compiled code objects in the WALKTHRU’s virtual environment.

4.1 The Original Kinematic Objects in the WALKTHRU

The original Berkeley WALKTHRU system supports a limited variety of time-varying objects.
The types of objects permitted are a subset of those allowed by UniGrafix with the BUMP
extension statements. In particular, the subset includes objects that move in a rigid-body fashion
using time-varying transformations, but not object that have deforming vertex transformations or
whose color changes with time. In order to understand the WALKTHRU system’s orignal
BUMP based mechanism for updating time-varying objects, we first need to review the creation
of the object database. None of the various WALKTHRU systems actually take UniGrafix as
direct input; they are all based on a visibility cell database, which is a decomposition of the
model into cells and visibility information. The cells contain objects as well as lists of other
visible cells. The visibility information is used by the WALKTHRU to prune the potential space
of visible objects to allow real-time navigation of the virtual environment regardless of actual
model size. In the WALKTHRU system, the applications wkcreate and wksplit are used to
build this visibility cell database; then wkadd is used to add the various content objects into these
visibility cells.

The WALKTHRU’s original wkadd utility creates animation structures for each time-varying
component in the 3D model. For a time-varying object, the animation structure contains a linked
list of all of the transformation statements (both static and time-dependent); for a static object the
animation structure is empty. These transform elements are the same as those appearing in the
original UniGrafix instance statement defining the time-varying object. The transform
statements appearing in the linked list are stored as strings, as are the dollar sign expressions
originally appearing in the UniGrafix file. Both static and kinematic transforms are inserted into

30

Figure 4.1: Example of original WALKTHRU animation structure created from a BUMP extended UniGrafix file.

wkadd created WALKTHRU data structures

Object Name: moving_triangle1

Type: An_Transformation_Animation_Type

Transformation list:

Example BUMP Extended UG File

(meval
def triangle ;
v v1 0.0 0.0 1.0 ;
v v2 0.0 10.0 1.0 ;
v v3 15.0 0.0 1.0 ;
f f1 (v1 v2 v3) ;
end ;
i moving_triangle1 (triangle
 -sy $ t * 0.1 $
 -rz $ -0.5 * t $
 -tx 100.0

-ty 250.0
);

) ;

wkadd
WALKTHRU utility

Transform type:
sy

Update expression:
$ t * 0.1 $

Transform type:
tx

Update expression:
100.0

Transform type:
ty

Update expression:
250.0

Transform type:
rz

Update expression:
$ -0.5 * t $

this list by wkadd. Figure 4.1 demonstrates an example UniGrafix object and the corresponding
animation structure created by the original wkadd for a WALKTHRU database file.

The updating function for kinematic objects is a simple parser and matrix multiplier that operates
on a kinematic object’s animation structure and in particular on its linked list of transformation
elements. In essence, the updating function employs two separate parsers and a full matrix
multiplication for each of the time-varying objects present in the scene. First, the updating
function evaluates the dollar sign expressions using the BUMP parser and evaluation functions.
Next, the transformation strings are parsed to determine the type of transform, i.e., whether they
are a rotation, translation, scaling, or arbitrary matrix transform. Finally, all of these transform
matrices (both static and time-varying) are multiplied together to compute a composite
transformation. The composite transformation is then copied into the object’s transformation
structure. This object transformation is the matrix used to position an object’s geometry within
the WALKTHRU prior to rendering. See Figure 4.2 for a graphical depiction of this updating
process performed on the animation structure of a time-varying object.

31

The WALKTHRU system’s implementation of time-varying objects has a number of limitations.
First, the WALKTHRU’s visibility decomposition relies heavily on a two-tier structure of cells
and objects, where only the objects can be time-varying. The reliance on objects as the only type
of primitive geometry structure, and the few elements of BUMP supported, limit the kinds of
kinematic components an author can incorporate into the model. For example, time-varying
objects permitted in BUMP and UGMovie that change their color or modify their individual

Figure 4.2: Updating process using BUMP for a WALKTHRU animation data structure

1.0 0.0 0.0 0.0
0.0 1.4 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

cos(-7.0) -sin(-7.0) 0.0 0.0
sin(-7.0) cos(-7.0) 0.0 0.0
 0.0 0.0 1.0 0.0
 0.0 0.0 0.0 1.0

1.0 0.0 0.0 100.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

1.0 0.0 0.0 0.0
0.0 1.0 0.0 250.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

Transform type:
ty

Update expression:
250.0

Transform type:
sy

Update expression:
$ t * 0.1 $

Transform type:
rz

Update expression:
$ -0.5 * t $

Transform type:
tx

Update expression:
100.0

Transform type:
ty

Update expression:
250.0

Transform type:
sy

Update expression:
1.4

Transform type:
rz

Update expression:
-7.0

Transform type:
tx

Update expression:
100.0

BUMP Parser and Evaluation Functions Time t = 14.0

Transform Type Parser

WALKTHRU Object
Transformation

Matrix Multiplier

WALKTHRU Animation Data Structures

Object Name: moving_triangle1

Type: An_Transformation_Animation_Type

Transformation list:

32

vertex positions could not be added to WALKTHRU databases using the original wkadd. The
absence of time-varying color is simply a fault of the incompleteness of the parser and updating
routines, while the inability to alter lower level geometry is a problem with the WALKTHRU
system. Originally designed for maximum performance, the WALKTHRU system stores all of
its elements in display list structures. Thus the explicit connectivity information contained in the
UniGrafix winged-edge data structures, as well as the original scene hierarchy have been lost.
Even if the WALKTHRU were altered to support all or most of the BUMP system extensions,
the performance findings of Section 3 demonstrate that a compiled system such as GLIDE is
both more expressive and considerably faster than the BUMP system. Therefore, simply
augmenting the existing system is probably not worth the effort.

Finally, there is the question of interaction. In the WALKTHRU there are two fundamental
problems that prevent the construction of interactive objects. Previous to the WALKEDIT work,
there was no mechanism for transmitting messages to particular objects based on the user’s
mouse events. In addition, the subset of the BUMP expression script language that the
WALKTHRU implements has no means of allowing these time-varying expressions to be
modified by user interaction. Therefore we will use WALKEDIT’s interaction paradigm and this
new more general compiled-code mechanism to augment the current capabilities of the virtual
environment and to provide for the creation of interactive time-varying objects.

Because of the limitations of the WALKTHRU, the only time-varying objects which appear in
the virtual environment are those that have no interaction and whose defining expressions are
simple equations of time. In the original model of Soda Hall there are only two classes of
kinematic objects, a number of non-interactive moving sculptures and an elevator which simply
ascends and descends through the building stopping at every floor. Clearly these objects are not
particularly interesting, nor are they useful other than as simple animations. The following work
presented in this section aims to improve the current state of these elements and to enable much
more interesting and complicated objects to be created and incorporated into the system.

4.2 Additions and Alterations to the WALKTHRU’s Animation Library

The WALKTHRU system has a library devoted to dealing with the time-varying aspect of
kinematic objects, called libanim. This library defines a single type of kinematic object as well
as some other related elements, such as a time variable and a mechanism for updating these
time-varying objects. In order to augment the current system with the new compiled-code
paradigm, a new type of time-varying object was added to the library. The compiled kinematic
object type differs from the BUMP version in three ways. First, the new system decomposes the
initial UniGrafix instance of an object into two separate matrices. One is the static placement
matrix, which consists of all of the non-dollar sign transforms of the instance statement
multiplied together. The wkadd application is responsible for creating this matrix and placing it
in an object’s description within the WALKTHRU database. The other matrix is the time-
varying behavior matrix, which is generated from a linked list of UniGrafix kinematic transform
elements. The linked list itself is formed from the dollar sign transforms of the object’s instance
statement and is created by the wkadd application. The second difference from BUMP is that the

33

linked list elements are compiled updating functions instead of the previous expression strings.
Finally, an interaction context is provided to the updating functions allowing objects to exhibit
interactive behavior.

4.2.1 Altering the Animation Structure

The first change to the animation structure of libanim was the addition of this new type of
compiled-code object. The new object type is added to the enumerated types for the animation
structure and is called AN_COMPILED_TFORM_ANIM_TYPE. Aside from this change the actual
structure of an animation is very similar to the BUMP implementation. We recall from the
previous discussion (Section 4.1 and Figure 4.1) that an original time-varying UniGrafix instance
statement is decomposed into a linked list of transformation elements with values stored for each
element. There are two differences between the new paradigm and the BUMP system. First, the
only elements stored in the list for these new objects are time-varying transforms; static
transformation components are no longer stored in this list. In addition the meaning of the
values stored has changed; for the new paradigm these values are links to compiled updating
code instead of being expressions that BUMP would parse and evaluate.

The values stored in the new compiled kinematic animation structures are now simply numbers
acting as links to the compiled updating code. A given number associates a particular piece of
updating code with its transform. These numbers are generated based on the parse order of the
original UniGrafix file. Therefore, the order of time-varying expressions should not be changed
between the first and second passes of the parser. Again as in Section 3.1.2, the wrapper
application dynUG is executed on the time-varying scene to generate the C code file ug.dynam.c.
This generated C code file is then linked into the animation library libanim when the
WALKTHRU itself is compiled and linked into a rendering system. Figure 4.3 presents the new
data structure with an example UniGrafix object converted into this WALKTHRU format.

4.2.2 Changes to the Kinematic Object Updating Routines

Instead of evaluating expressions during an update, as in the BUMP system, the new updating
function executes the pre-compiled and linked code. The animation library libanim decides
based on the type of animation object found and determines whether it is one of the old BUMP
defined objects or one of the new GLIDE-based object types. For these new compiled-code
objects, the update process executes a generic function with an object specific argument, which
is based on the parse order of the original statements. We recall from Section 3, that the code
produced and output in the ug.dynam.c file by the wrapper application dynUG contains a single
switch function used to update all time-varying elements. One of the arguments to this
function, the which argument, is used by the switch statement to choose between the various
code elements in a time-varying scene. For the WALKTHRU, we store a different value of
which for each transform of an object; thus, each transform can reference its own unique piece of
code appearing in the ug.dynam.c file. Figure 4.3 demonstrates this link between updating code
and the WALKTHRU data structures.

34

Figure 4.3: Example UniGrafix file converted into new WALKTHRU animation structure with the
associated code generated by dynUG

Example of New Compiled Extended UG File

def triangle ;
v v1 0.0 0.0 1.0 ;
v v2 0.0 10.0 1.0 ;
v v3 15.0 0.0 1.0 ;
f f1 (v1 v2 v3) ;
end ;
i moving_triangle1 (triangle
 -sy $ Time * 0.1 $
 -rz $ -0.5 * Time $
 -tx 100.0 -ty 250.0);

New wkadd Created WALKTHRU Data Structures

Object Name: moving_triangle1

Type: An_Compiled_Tform_Anim_Type

Transformation list:

Generated C code file for kinematic object: ug.dynam.c

void UG_DYNAM_FUNC0(int I, int which,
 float *floatval,
 DB_OBJECT *object){

switch(which) {
case 1:

floatval[0] = (float)(Time * 0.1);
floatval[1] = (float)(0.0);
floatval[2] = (float)(0.0);
break;

case 2:
floatval[0] = (float)(-0.5 * Time);
floatval[1] = (float)(0.0);
floatval[2] = (float)(0.0);
break;

}
}

Reference to Scale in Y Transform (sy)
updating object executes function

UG_DYNAM_FUNC0(I, 1, value, object)

Reference to Rotate in Z Transform (rz)
updating object executes function

UG_DYNAM_FUNC0(I, 2, value, object)

Transform type:
sy

Update expression:
$ 1 $

Transform type:
rz

Update expression:
$ 2 $

dynUG
first pass parser

The final enhancement of the new updating system is the ability of compiled updating code to
modify object properties other than geometric transformations. Using the new system, an
object’s color and texture, in addition to its transformations, can vary with time. We enable this

35

final enhancement by augmenting the animation evaluation function to pass an object’s pointer
into its transformation updating functions. This allows a transformation element to alter its
parent object’s data structure and in particular the color or texture properties of the parent object.
Access to a variable called object, which is a pointer to the parent instance statement, from
within the context of a dollar sign expression allows these properties to modified. See section
4.4.3 for an example of a multi-colored and multi-textured object that cycles through a variety of
colors and textures.

4.2.3 Modifications to Enable WALKEDIT to Manipulate Kinematic Objects

WALKEDIT’s primary purpose is to allow intuitive and realistic object placement and
manipulation within the virtual environment. Due to incompatibilities the user could not move
BUMP objects using the original WALKEDIT manipulation system. If the user tried to move an
object, the object would revert back to its original location whenever it was re-drawn. In the
original system, there was a conflict over the use of an object’s positioning matrix, which is used
to determine the location of geometry within the virtual environment. Both BUMP and
WALKEDIT would modify this matrix and overwrite each other’s results causing this strange
interaction behavior.

In order to reconcile this conflict, a number of options were considered. The best possible
solution would be to simply add a new matrix to the object data structure. This was not
implemented, but in such a scheme WALKTHRU/WALKEDIT objects would have two separate
matrices, one for WALKEDIT to use as a positioning matrix and another one for the time-
varying behavior elements. The kinematic system would remain unchanged; it would produce an
absolute positioning matrix for an object, which would then be multiplied by this new
incremental fine-positioning matrix. With such structures, objects could be moved while being
updated, and the original system of defining objects would not need to be altered. This approach
has the serious disadvantage that it requires modifying the actual object data structures of the
WALKTHRU, invalidating all pre-existing WALKTHRU database files and necessitating large
systematic changes to most WALKTHRU libraries.

For simplicity and backwards-compatibility, we implemented a different solution that alters the
meaning and effect of the new time-varying kinematic instance statement; it leaves all other
statement types unchanged. This solution separates the main positioning matrix into two parts: a
static placement matrix, which is stored within the object’s data structure, and a new time-
varying behavior matrix that is not stored since we did not want to modify the WALKTHRU
object data structures. Instead, the new time-varying behavior matrix is regenerated every
frame. The WALKEDIT manipulations in the new WALK-KIN system operate as before upon
the static matrix. In this system, the time-varying matrix is pre-multiplied so that its
transformations are performed in the object’s local coordinate space. This modification changes
the behavior of objects in two ways. First, the static elements of the transformation statements
are not regenerated after the object is added via the wkadd program. In effect these
transformation statements become a placement matrix for the object and can only be
subsequently altered by the WALKEDIT manipulation procedures. Second, the time-varying

36

Rendering
Phase

Database
Creation Phase

Interaction
Phase

Viewing
Phase

WALKEDIT
Interaction

Handler

WALKEDIT
Manipulation

Matrix

Time-Dependant
Behavior Matrix

Viewing
Transform

Rendering
Engine

Transformed
Geometry

Kinematic
Updating
Functions

Static
Placement

Matrix

Object
Geometry

UniGrafix
Master
Object

Definition dynUG

wkadd

Figure 4.4: The new interaction / manipulation pipeline for kinematic objects, processes are shown as
boxes and data are shown as text or as matrices.

transforms are based on the object’s local coordinate system regardless of their ordering with
respect to the static transformations. The rationale behind this scheme is that the time-varying
elements help to define the object itself, whereas the other static transforms simply place an
already existing whole object within the virtual environment. Figure 4.4 illustrates the kinematic
updating / manipulation pipeline for the new WALK-KIN package with data and matrices for the
various stages.

4.3 Modifications to the WALKTHRU Parser

In order to incorporate the new compiled-code kinematic objects into the WALKTHRU’s virtual
environment, the application wkadd was augmented. The wkadd application adds interior objects
to a WALKTHRU visibility cell database. In particular, wkadd’s parser is enhanced so that it
can parse and create new elements linking scene geometry to compiled code. The new wkadd

parser functions much like the second pass parser discussed in Section 3. Appendix C:8 contains
a reference to the location of a tutorial and notes on the wkadd script and the building of the new
WALKTHRU/WALKEDIT system using the WALK-KIN extensions.

For each compiled kinematic instance the new wkadd application creates a WALKTHRU object
with an animation structure. The animation structure is of the new compiled type
(AN_COMPILED_TFORM_ANIM_TYPE) and contains the linked list of transform elements. Note that
a compiled kinematic instance is a UniGrafix instance statement that contains dollar sign
expressions that are valid C code statements. During parsing, wkadd separates all of the

37

Figure 4.5: The process of creating a new compiled-code kinematic WALKTHRU object
using the new wkadd and dynUG utilities

Example of a New Extended UG File

def triangle ;
v v1 0.0 0.0 1.0 ;
v v2 0.0 10.0 1.0 ;
v v3 15.0 0.0 1.0 ;
f f1 (v1 v2 v3) ;
end ;
i moving_triangle1 (triangle
 -sy $ Time * 0.1 $
 -rz $ -0.5 * Time $
 -tx 100.0
 -ty 250.0

);

Generated C Code File for Kinematic Object

void UG_DYNAM_FUNC0(int I, int which,
 float *floatval,
 DB_OBJECT *object){

switch(which) {
case 1:

floatval[0] = (float)(Time * 0.1);
floatval[1] = (float)(0.0);
floatval[2] = (float)(0.0);
break;

case 2:
floatval[0] = (float)(-0.5 * Time);
floatval[1] = (float)(0.0);
floatval[2] = (float)(0.0);
break;

}
}

dynUG
first pass parser

Transform type: sy
Update Function
Reference: $ 1 $

Transform type: rz
Update Function
Reference: $ 2 $

WALKTHRU Animation Data Structure

Type: An_Compiled_Tform_Anim_Type

Transformation list:

Time-Varying
 Behavior Matrix

WALKTHRU Object Data Structure

Object Name: moving_triangle1
Animation:
Transformation:

1.0 0.0 0.0 100.0
0.0 1.0 0.0 250.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

Static Large-Offset Placement Matrix

wkadd
second pass parser

transform elements into static and time-varying components. All static transformation elements
are composited together to form the static placement matrix. Since transformations are not in

38

general permutable, the user needs to include all static transforms that must be done before the
dynamic updating inside dollar sign expressions to preserve the original ordering of
multiplication. After multiplying the static transforms, the time-varying transform elements are
placed inside the linked list of transform elements, which together form the time-dependent
behavior matrix.

Finally, the code generated by the first pass parser, dynUG, is compiled and linked into the new
WALKTHRU / WALKEDIT environment via the animation library libanim. The linked list of
transform elements in a compiled object differs from the parsed case: in the compiled case
expressions are not stored in these linked list elements. Instead of expressions, the wkadd parser
stores the transform type, the code reference number, and a generic time-varying or slider-
dependent updating function. The code reference stored is simply the value of the which
variable discussed in Section 3.1, and the generic function is a pointer to the generated function
created by the dynUG application. Figure 4.5 demonstrates the wkadd and dynUG process of
parsing a kinematic object into a compiled WALKTHRU animation object.

4.4 Examples of Kinematic Objects

Here we present a number of examples that use the new compiled kinematic objects. The first
group is a re-implementation of the previous BUMP defined WALKTHRU objects,
demonstrating that this system is capable of exactly the same behavior as the BUMP system.
The later examples demonstrate capabilities which are well beyond those achievable using the
simple BUMP expression language script. The third example demonstrates the power of
providing an execution context and the use of C as the compiled scripting language. This
particular kinematic instance statement modifies object traits not supported by WALKTHRU
BUMP objects, such as altering the object’s texture and color using the object variable provided
by the extended execution context.

4.4.1 The Simple Hingebug and Cubogear

In the original model of Soda Hall a number of simple moving sculptures appear throughout the
building. As a first test of this new system, we decided to re-implement these objects using the
new compiled-code scheme and the new extended UniGrafix parser. The two objects used are
the hingebug and the cubogear; they behave in exactly the same fashion as in the original
BUMP implementation. The expressions that drive these kinematic objects are simply the
original BUMP expressions re-formulated to be valid C expression syntax. These objects were
re-implemented to demonstrate that the new system could express the original implementation’s
elements and also to show the ease with which original BUMP defined objects could be re-
implemented in the new system. The locations to both of these objects are given in Appendix
C:2.

4.4.2 A Complicated Pseudo-Physics Simulation (the Gravity Example)

In the original system there are serious limitations caused by the primitive scripting language and
its lack of certain constructs, most notably iteration and recursion. The new system can handle

39

more complicated behaviors and simulations. A gravity simulation was built to demonstrate
some of the capabilities of the new compiled-code paradigm. The simulation consists of a
simple force based computation of gravity between four spherical objects treated as point-masses
for the force computations. The spheres interact via the force of gravity and rotate around one
another, since they begin the simulation with initial velocities. Finally, a simple repelling force
simulating inelastic collision between the objects is used to keep them from getting too close to
one another. The location for this example component is given in Appendix C:3.

4.4.3 A Multi-Colored, Multi-Textured Object

The final object discussed here utilizes the new object variable and the access it grants to object
properties inaccessible through the BUMP system. The execution context provided by the new
system allows an object’s time-varying transforms to alter its parent object’s properties. As a
test case for exploring these new capabilities, a new simple object with complicated texture
behavior is created. It is a simple cube that displays different textures and colors through time.
Since the cube’s time-varying behavior does not involve moving geometry, the transform used to
control it must return an identity matrix. Thus, we control the cube through a transform
statement, whose code alters the surface properties of color and texture as a side-effect, and
which does not move the object but instead returns an identity matrix. Later in the report this
object is generalized and enhanced with some interaction mechanisms, and also the texture
images are enhanced into movies (see Section 5.3.3 for the video viewscreen object). At this
stage the object simply cycles through a series of textures while altering the colors used to
display them, demonstrating the new capabilities of texture and color modification. See
Appendix C:4 for the location of this example object.

40

5 Interactive Kinematic Objects in the WALKTHRU

Although simple time-varying objects may be useful from a designer’s point of view and can
provide a more interesting virtual reality experience, they are unable to actively engage the user.
A moving sculpture that evolves through time may be interesting to observe, but it is essentially
passive and static in content—simply something to be viewed. The user has no control over
what the object does, and the object cannot respond to the user. To extend this system and
provide for a more active experience we need interactivity.

In order to create interactive objects we need to address two issues:

1) How does the user select an object?

2) Given a selected object, execute the appropriate behavior code.

There exists a wide spectrum of possible solutions, varying in both complexity and functionality.
In a complex system the user might open a door by manipulating a virtual model of a hand and
creating forces using a data glove to manipulate the door’s handle and push the door open. A
less complex system might use a pseudo-physical system in which the user’s mouse controls a
virtual ‘stick’ through which the user can create forces in the virtual environment. In a simpler
system a keyboard stroke or an external menu-based control system might allow a door to be
opened. We have chosen an intermediate solution. Our interaction model provides a point and
click selection mechanism and event handlers that support a general behavior execution system
capable of performing arbitrary computations.

5.1 Overview of the System

The WALK-KIN interaction system operates in the two steps mentioned above. The first step
uses a mechanism identical to the WALKEDIT selection system to determine the selected object.
In the second step, the new WALK-KIN interaction system invokes the appropriate event
handler determined by the mode of operation (i.e., the type of query being performed) and the
type of object selected.

The first part of the object selection process operates by generating a selected object and a
query type. From Figure 5.1 we see that event information flows from the WALKEDIT
selection mechanism through the WALKTHRU and into the Interaction Event Manager. The
selected object is determined by projecting the user’s mouse coordinates into the virtual
environment. The query type requires no explicit computation and is directly based on the
mode of operation. Both of these pieces of information are combined together to form an object
interaction event. The Interaction Event Manager invokes a particular WALK-KIN event
handler for each of the different event types. Currently three different event handlers are linked
into the system: the kinematic interactive object event handler, the WWW query object event
handler and the original WALKEDIT object manipulation mechanism. The behavior of the
event handler itself is dependent on the selected object information and other properties of

41

the object structure. The possible behaviors are respectively: execute an object’s interaction
script, determine and display the URL for the object, determine the owner or occupant associated
with the object, or move this object using the WALKEDIT manipulation system. Based on these
two pieces of information (selected object and query type) the WALK-KIN Interaction
Event Manager invokes the appropriate event handler.

The kinematic interactive object event handler provides a link between the interaction
mechanism itself and all of the new compiled-code kinematic objects present in the virtual
environment. It can serve as a simple ON/OFF switch or it can be used to change various
attributes of the object itself. Furthermore, since the behavior script executed is compiled C
code, it can access other WALKTHRU objects through shared state or it can provide access to an
integrated simulation such as the CFAST fire simulator.

The WWW query object event handler allows the user to access external information about
various objects by associating these objects with specific URLs. This handler can thus provide
links between the WALKTHRU virtual environments and arbitrary Web based databases such as
an architectural database or an occupancy database. Finally, the third event handler is simply the
original WALKEDIT manipulation package and the related object association and object
relocation functions [4]. The object associations link different interior objects together enabling
them to be manipulated by the user as a conceptual whole. Similarly, object relocation functions

Figure 5.1: Flow of information between the WALK-KIN interaction mechanism and the new WALK-KIN event handlers.

query
type

mouse
position

User

picking
ray

WALKEDIT
Interaction
Mechanism

WALKTHRU

selected
object event

Interaction
Event

Manager object association
object relocation

WALKEDIT
placement

associations

selection and
movement of

objects

interaction variable
selected object

kinematic object
interaction event

handler

invoke kinematic
object updating

function

selected object
query type

WWW query
object event

handler

retrieve
object URL

retrieve
 occupant URL

42

define how a user’s mouse motions manipulate and move interior objects within the virtual
environment.

5.2 Object Selection

A widely accepted way of selecting an object is for the user to point at an object in view and to
click the mouse button to select it. The scheme for picking objects in 3D used in the original
WALKEDIT [4,5] package operates in exactly this fashion. Picking is performed by casting a
ray from the user’s eye through the mouse position on the view plane and into the model. This
picking ray is then intersected with all of the currently visible objects. The object that is closest
to the viewer along this ray is returned as the selected object. This picking scheme relies on two
specific functions: map2d, an SGI specific function that determines the picking ray, and a ray
intersection function that performs the necessary intersections and determines the object closest
to the user in the virtual environment. By incorporating the event handlers into the WALKEDIT
system as a package, we inherit the WALKEDIT selection mechanism.

5.3 The WALK-KIN Interaction Event Manager

The new WALK-KIN interactive kinematic object package consists of the interaction event
manager and the related event handlers. We have chosen the WALKEDIT system as the basis
for our new WALK-KIN package for three reasons. First, by adding WALK-KIN as an
extension to the WALKEDIT system we obtain access to all of its interaction mechanisms and in
particular the new kinematic objects obey the object association placement system. Next, we are
able to use the WALKEDIT interface mechanism and incorporate our elements into its TCL/TK
[20] user interface. Finally, by placing all of the compiled-code functions and variables within a
package, we can activate, deactivate and alter object controlling variables or the interaction
mechanism all while the application is visualizing a virtual environment.

The new package, WALK-KIN, processes selected objects before they are sent to the
WALKEDIT event handlers. When an event is received by WALK-KIN, the interaction event
manager decides whether to call an event handler or to simply pass the elements on to the
WALKEDIT interaction system. The decision is based on the type of query (query type) the
user initiated as well as the kind of object selected (selected object). In the case of a static
object, the user can either manipulate it via the WALKEDIT mechanism or they can query it
using the WWW query object mechanism. For time-varying objects they have a third option: to
activate it or otherwise interact with the behavior function bound to the object.

The WALK-KIN package is also responsible for passing environment variables to the various
handlers. In order to interact with an object, the behavior code needs an interaction variable
(interaction) and access to the object’s data structure (object). These two pieces of
information allow the updating scheme (discussed in Section 4.2.2) to permit changes in
behavior. For example, the interaction variable can act as an on/off switch or otherwise keep
track of user interactions. The object pointer enables the behavior code to modify object

43

information other than just the transform values of its instance statement (see Section 4.2.2 for a
discussion of the object variable).

5.3.1 WWW Object Query Event Handler

The ability to link static objects within a virtual environment to other elements of data (e.g.,
intrinsic properties of the object or related issues) is clearly a desirable feature. For an
architectural visualization like the WALKTHRU, linking the model to an architectural database
and allowing access from within the virtual environment could prove to be very valuable, since it
allows the user to access design issues and concerns directly from within their 3D context. This
type of linking naturally augments both the issue database and the virtual environment. We
decided to merge the database and the virtual environment by creating links to information on
the World Wide Web (WWW) from within the original WALKTHRU application.

Providing such a link raises two problems. First, how can we integrate a Web browser into the
WALKTHRU framework? And second, how can we translate object and occupancy information
into relevant URLs to be loaded by the browser? The two browsers that we chose to support
were Netscape NavigatorTM and NCSA Mosaic. The mechanisms used to control the browsers
differ, so separate routines were created to interact with each of them.

In the case of Netscape’s NavigatorTM, the application provides an explicit remote control
mechanism. We use this mechanism to link the WALKTHRU with the Web browser.4 A facility
to interface external applications with a currently running NavigatorTM browser is provided
through the use of the command:

netscape -raise -remote ’openURL(URL-STRING)’

where the string URL-STRING specifies the URL to be loaded. This command will fail with a
non-zero status value if a browser is not running on the system. In this case, a new browser is
invoked with the command:

netscape ’openURL(URL-STRING)’

In either case, the command is issued by the WWW query object event handling routines using
the C system() function, which issues a shell command from within a C program. The remote
control process for the NavigatorTM browser is illustrated in Figure 5.2.

For Mosaic, a slightly more complicated technique is required, since a simple mechanism for
externally controlling the application is not provided.5 Mosaic contains a special interrupt signal
handler that provides access to its remote control features. If the process ID (pid) of the browser
is known, an application can send the signal SIGUSR1. When Mosaic receives this signal it

4 The relevant information is located at http://home.ntescape.com/newsref/std/x-remote.html

5 Information for manipulating Mosaic can be found at http://www.gene.cinvestav.mx/remote-control.html

44

Figure 5.2: The WWW query object event handler controlling Netscape’s NavigatorTM

Object’s Universal
Resource Locator (URL)

object/occupant
mapping to URL

selects
with mouse

query
type

User
picking

ray

WALKEDIT
Interaction
Mechanism

selected
 object

Invoke
Netscape’s

 NavigatorTM
WWW query
event handler

selected
object event

WALKTHRU

retrieve and
display URL

Netscape’s
NavigatorTM

executes the commands contained in the file /tmp/Mosaic.pid on the machine with the browser
running locally. In our case the text file consists of two lines: the first contains the keyword
goto and the second contains file://URL-STRING, where URL-STRING represents the URL to be
loaded and displayed. The WWW query object event handler starts a new Mosaic process when
the first query object event occurs in order to obtain the browser’s pid. Subsequent object query
events simply store a new URL in the text file /tmp/Mosaic.pid, and then send the SIGUSR1

signal to the browser. The signaling and file input/output process for the Mosaic browser is
demonstrated in Figure 5.3.

The WWW query object event handler’s final task is to determine the URL to present. To date
we have linked two types of information for users to access by performing a query: object data
about content items and occupancy information about Soda Hall. When the user selects an
object to request object data, the event handler identifies the class of the object. A table is used to
map object class names to URLs. In our simple implementation, all of the different classes of
objects present in the Soda Hall model have been entered in the table. Corresponding HTML
pages for each object have also been created. The HTML pages act as placeholders for useful
information about the different object classes and are a temporary proof of concept for the
implementation. It is certainly possible to have the event handling mechanism generate arbitrary
query strings for either a Web-based database system or some other kind of database.

In a similar fashion, when the user queries an object for occupancy information, the name of the
object is parsed and a room number corresponding to its location is generated. In the current
WALKTHRU database of Soda Hall, each object stores its office room or corridor number as
part of its name. This is an artifact of the method used to define the building, and of the

45

instancing hierarchy of the UniGrafix language. We exploit this property by using an object’s
name to derive its office number. A table is used to map office numbers to occupancy
information by processing a building roster of Soda Hall. This roster associates a person with a
given office number. The HTML page displayed for the occupancy query includes an
occupant’s name and personal homepage.

5.3.2 Kinematic Object Interaction Event Handler

The kinematic object interaction event handler is the main mechanism enabling kinematic
interactive objects in the WALKTHRU. The event handler takes a selected object and finds its
associated updating code. This function is executed within an interaction context that enables
state-based objects (those objects defined with local variables) to be defined. Finally, the
updating function alters the state of the object and its properties as well as the transformation
matrix positioning the object. The context permits an interactive behavior script to alter an
object’s color and texture properties and the matrix manipulation allows objects to be moved.

The interaction event handler for kinematic objects behaves in a similar manner to the WWW
query object event handler. For this handler, the data is a pre-compiled update function rather
than the WWW query object’s simple URL. Kinematic objects in the WALKTHRU function by
means of the generic updating functions that evaluate their animation structures and return a
matrix value (see Section 4 for details). Aside from the issue of what is done with this matrix

Figure 5.3: The WWW query event handler communicating with NCSA Mosaic

picking
ray

WALKEDIT
Interaction
Mechanism

Object’s Universal
Resource Locator (URL)

object/occupant
mapping to URL

selected
object event

WALKTHRU
selects

with mouseUser

query
type

selected
object

Invoke
NCSA Mosaic

WWW query
event handler

Signal process
with SIGUSER1

command file in
tmp/mosaic.pid

read URL and
commands from file

retrieve and
display URL

NCSA
MosaicBrowser

pid

46

and what it represents (which is the focus of Sections 4.2.2 and 4.3), we must also consider when
it gets invoked.

Ordinarily, a kinematic object’s updating function is called just before it is drawn in order to
update its geometric position. This is the case for BUMP time-varying objects as well as the new
compiled variant. In both cases, a function (ANEvaluateAnimationTransformation) is called
on the kinematic object. This function is able to evaluate both parsed and compiled kinematic
objects and it returns the time-dependent behavior matrix (discussed in detail in Sections 4.2.2
and 4.3). To implement interactivity, we need to call this function whenever the user selects the
object.

However, because of the very presence of the new interaction scheme and its out of sequence
updating calls, we cannot simply call the updating function. Consider a kinematic object that is
not interactive: under this scheme when the user selects it, the object will be updated one
additional time during that frame. Thus, the object’s internal state would be off, and some of the
updates would not have been displayed; for a state-based object that cycles through a series of
different visual states, some of these may not be displayed because of this updating behavior. In
addition, there would be no way to use the selection mechanism to pass different information to
an object. Since interactive objects need to respond to the user and may need to change their
internal state, e.g., turn on when selected, they must have two different types of updates: a
generic draw update and an interactive selection update.

The WALK-KIN event handling mechanism solves this problem by passing information to the
object’s updating code. Two different pieces of data are passed into the function providing an
execution context: one is an interaction variable and the other is a pointer to the object (this
object pointer is discussed at length in Section 4.2.2). The animation evaluation functions are
modified to add these two additional elements of data and the dynUG application is altered
accordingly.

The dynUG application has been augmented so that the generic C code function UG_DYNAM_FUNC0

has two additional arguments: interaction for the interaction variable and object for the
parent object’s pointer. The value for interaction is true only if the object has just been
selected and it is false during all other updates. For a particular element of transform code, the
value of object is a pointer to the defining instance’s object data structure. Providing these
elements in the generated C code enables any dollar sign expression to reference these two
variables. Thus, a simple piece of C code appearing in a transform’s updating expression6 can
implement an ON/OFF toggle switch by using the interaction variable. Figure 5.4 depicts the
interaction process and the various cases of execution for the updating code.

Given this interaction variable, an object can have two different code elements: one executes if

6 For example, a simple interaction mechanism controlling an on/off state variable might be: if (interaction)
{on = !(on) }

47

Figure 5.4: Flow of information between the Kinematic Object Interaction event handler and the WALKTHRU system

picking
ray

WALKEDIT
Interaction
Mechanism

selected
object event

WALKTHRU
selects

with mouseUser

Final Updated
Object

position object and
update properties

selected object’s static
transformation matrix

object’s animation
structureObject Interaction

event handler

selected object’s
geometry

interaction variable
set to TRUE

interactive
time-dependent
behavior matrix

Animation
Evaluation
Mechanism

executes UG_DYNAM_FUNC0

with interaction set to
true for each transform

the object is selected and the other executes during a normal update. Since the behavior function
executed is stored as its own C code, it can have local state as in the on variable example6, or it
can have other more complicated state-based behavior. Finally, objects can be coupled through
their C code state and thus their behaviors can affect one another. An example of this coupling is
the juggling sculpture (see Appendix C:5 for source location) which consists of a planar
rectangular object and three spheres. The picture plane object is interactive and selecting this
component activates the three spheres by modifying a shared on/off state variable.

5.4 WALKEDIT and Object Associations

In order to demonstrate the power of using both the new interaction event handlers and the
original WALKEDIT object association package, we decided to define new elements that could
be used to control the interactive manipulation of objects. One behavior that was deemed
necessary and interesting was the creation of a hinge. In this implementation, the hinge is not an
object in the virtual environment but rather it is both an object association and an object
relocation procedure built into the WALKEDIT framework. The hinge is a basic component of
many articulated objects and is particularly useful in building elements to represent operational
doors.

The hinge mechanism functions by grouping two objects as well as defining a constraint on the
types of motion between these two objects. The hinge’s object association creates a conceptual
pair containing the ‘anchored’ parent object, that provides the reference frame, and the ‘hinged’

48

child element that can move with respect to the parent. The hinge’s object relocation procedure
constrains the user’s interaction along a line perpendicular to the hinge axis, creating a natural
hinge type of motion for the ‘hinged’ element. The other ‘anchored’ element is not constrained
in this fashion and may have other object associations and relocations applied to it.

In the current implementation, the object relocation procedure is generic and three slight variants
exist. The relocation procedure can be used for many different objects and is generic in the
sense that it performs a local constrained rotation around an object’s local axis. Currently, the
three variants simply apply the rotation around a different principle axis within the objects local
coordinate system and are named: On_Hinge_X, On_Hinge_Y, and On_Hinge_Z, with the last
letter denoting the principle axis of rotation. The object relocation procedure transforms the
user’s mouse movement events into a rotation about the hinge axis. Currently, no alignment of
the ‘hinge edge’ with edges on the associated object is performed and thus care must be taken
when defining and placing the object. For example, the On_Hinge_X relocation procedure uses
the x-axis of the object’s master coordinate system as the ‘hinge edge’ and so user mouse
motions rotate the object around this edge. Thus for a door to appear correctly, it must be
defined so that its ‘hinge edge’ is this relocation axis; and it must also be placed in the virtual
environment so that its ‘hinge edge’ is coincident with the corresponding ‘hinge edge’ of the
associated ‘anchor’ object.

The object associations are fixed on a per object basis and are thus not generic and currently take
an arbitrary object and associate it with the closest named object of the instance type defined in
the association itself. For example, an On_DoorFrame association takes any object and associates
it with the closest ‘doorframe’ object in the virtual environment, while the On_Seat association
operates in the same fashion with the closest ‘seat’ object.

5.4.1 Example of an Interactive Office Chair Created Using Object Associations

In order to test the hinge association and determine the usefulness of using object associations to
define interaction, a simple office chair was constructed. The chair exhibits a multitude of
different behaviors and demonstrates the value of using associations to define interaction
paradigms for both static and kinematic objects. The associations and interaction mechanisms

Figure 5.5: Depiction of Chair object and its components. Rotation axes are shown as dashed lines.

Hinge axis

Seat axis

Hinge Edge

BackRest
Mouse Manipulation of
BackRest causes rotation
around the Hinge Axis

Mouse Manipulation of
the Seat causes rotation
around the Seat Axis

Seat

49

for the virtual chair are modeled on an office chair that has a movable seat and pivoting backrest.
In particular, the back of the chair can be manipulated about a hinge connecting it to the seat and
the seat can be rotated around the base column. Finally, the base of the chair can be manipulated
around the virtual space: turned, pushed and even stacked with the other two components
following suit as a coherent whole. Figure 5.5 demonstrates the new components of the chair
object and their corresponding rotation axes.

The chair object is implemented through three separate object associations and object
relocations. The back is associated with the seat via the On_Seat association, which causes the
back to follow the movements of the ‘seat’ object rigidly. The On_Hinge_X procedure relocates
the back relative to the hinge allowing it to be manipulated as if a real hinge existed between it
and the associated ‘seat’ object. In addition, the ‘seat’ object itself is constrained by the
On_Horizontal_No_Trans association and the Pseudo_Gravity_On_Center relocation. The
association moves the seat object to rest on a horizontal surface below it, while the
Pseudo_Gravity_On_Center relocation causes the seat to drop directly down as if by gravity.
Finally, the base of the chair is constrained to remain on the floor and obey the basic pseudo-
gravity behavior through the Pseudo_Gravity relocation and the On_Horizontal association.
The difference between these two sets of associations and relocations is that in the seat case they
were modified to disable translation and only allow rotation around the central axis, otherwise
these two sets (Psuedo_Gravity/On_Center and On_Horizontal/No_Trans) are identical.7 In
the current implementation the hinge motion is achieved by taking the x motion of the mouse and
mapping it as the rotation about the hinge axis, we hope to extend this to be a projected mapping
of the x,y mouse motion perpendicular to the hinge axis in the near future.

5.4.2 Example of an Interactive Door Created Using Object Associations

The hinged door was built in order to integrate the notions of interactive objects with the
simulation paradigm developed in the WALKTHRU-CFAST project. It uses the generality of
the hinge relocation procedure and a slightly modified object association to associate a ‘door’
object with the ‘doorframe’ object. The ‘door’ has the On_DoorFrame object association and
thus it is paired with the closest ‘doorframe’ object in the virtual environment. Furthermore, the
‘door’ object relocates according to the On_Hinge_Z object relocation so that the user’s mouse
interaction rotates the ‘door’ around its z-axis, creating the required motion for opening and
closing. Finally, the ‘doorframe’ object acts as a regular piece of furniture using the
On_Horizontal association to remain on horizontal surfaces and the Pseudo_Gravity relocation
to act as a ‘real’ object by falling to horizontal surfaces.

5.5 Examples of Interactive Kinematic Objects

Given all of these mechanisms, our final task was to create a variety of interesting example
objects and place these within the WALKTHRU environment. In the following sub-sections we

7 The modifications of the standard associations and relocations were performed by Richard Bukowski.

50

focus on the combination of interactive elements and kinematics. In particular, we will discuss
kinematic objects that the user can activate or deactivate using the interaction mechanism
discussed in Section 5.3.

5.5.1 Interactive Moving Sculptures

As a first exploration into these new interactive kinematic objects, we augmented the existing
models, hingebug and cubogear, with the kinematic object interaction mechanism. The
originals are simply self-contained, moving objects that are always on and evolving through their
cyclical behavior. We have changed these sculptures, so that the pedestals act as ON/OFF
switches. When the object is activated it will begin its cyclical motion, and when it is
deactivated the object will remain in its new position.

The mechanisms used to build these two objects follow directly from Section 5.3.2. The time-
varying expressions behave in the same manner as with the BUMP system, but have now been
converted into the new compiled-code system as C code expressions. The pedestal object acts as
an interactive kinematic mechanism for storing the sculptures internal state. The sculptures are
no longer driven by the time variable t, but instead have a private notion of time. In these two
example sculptures, the variables are hingetime and cubetime respectively. The private time
variable controls all of the kinematic expressions responsible for the movement of a particular
sculpture. The locations for the demo files of the hingebug and cubogear complete with
pedestals can be found in Appendix C:6.

5.5.2 A Video Playback Viewscreen

As another example of an interactive kinematic object, we present a video playback called
viewscreen. We developed this object to demonstrate the combination of all three new
elements of our system: 1.) a compiled-code system allowing powerful operations such as texture
definition and binding, 2.) an interaction mechanism capable of activating objects, and 3.) an
environment granting access to parent object’s properties through the object variable. In
contrast to the previously mentioned simple sculpture objects, the video viewscreen does not
use time-varying transformations to modify its geometry; rather the texture bound to the object
itself is modified by the updating code. Using this mechanism, we are able to achieve real-time
video playback as a time-varying texture map displayed on a polygon in the virtual environment.
Video playback represents a more interesting example of interactive kinematic objects, since this
object’s content varies over both time and user input. The presence of the evaluation context
makes this system general so that any object could be modified to play video on its surface. The
current implementation is limited to altering the texture at the object level and does not allow
polygons of an object to be textured differently.

The video playback system works by taking a series of image files in the SGI rgb file format
representing consecutive frames of a video and texture mapping them onto the polygons of an
object. The texture maps are cycled in frame order to achieve the effect of video playback. Our
system provides real-time performance on a RealityEngineTM II [1] dual 150 MHz processor

51

machine by pre-loading the textures into memory and updating the currently bound texture using
GL-specific library commands [16]. The pre-loading of textures is required to support real-time
playback, although subsequent work demonstrated that a playback rate of ten frames per second
is possible without pre-loading (this is described in more detail below). There are a number of
problems with pre-loading textures, the most significant of which is the limited amount of
texture memory, and therefore the inability to provide real-time playback of arbitrary length
video. Given our current configuration of 4Mb of texture memory and 128 Mb of main memory,
we can only pre-load approximately 700 frames of video (where each frame is a 256 x 128 x 3
byte color rgb image). This is insufficient for even a small video segment. Playback normally
runs at between 24 and 30 frames per second, so a limit of 700 frames supports at most 30
seconds of video stored in memory. What we ultimately want to provide is the ability to display
compressed video that is stored at a distant location on the World Wide Web. This would allow
video objects to mirror the static URL work discussed in Section 5.3.1. Given such a system, the
user could bind video clips on the Web to a viewscreen in the virtual environment, and have
acceptable frame rates after a partial download of the source video from the remote site.

The video playback system has currently been incorporated into a viewscreen interactive
kinematic object. The object’s C code encapsulates the salient features of the video playback
mechanisms and performs the loading and binding as a pre-processing task in the WALKTHRU
using the WALK-KIN extension. The interactive binding and real-time playback is achieved
through an interactive identity transform that accesses its parent object’s data structure (see
Section 4.4.3 for details). Instead of manipulating a transform matrix, this identity transform
alters the viewscreen’s texture pointer to point to the next frame of video. If the local on/off
state variable is ‘on’, playback proceeds by fetching the next frame of video and binding it to the
viewscreen’s object definition. The location for example code and demo UniGrafix files for
this object are in Appendix C:7.

In order to further investigate the texture pre-loading requirement, we built another test system
on a newer version of the SGI operating system IRIX version 5.0.3. Doing this allowed us to use
new GL texture-mapping capabilities specifically designed for the Reality Engine II architecture.
Our new system does not pre-load the textures into memory. Instead, it waits until a request is
made and then loads and binds textures during the display of the video. This removes both the
initial overhead of pre-loading the images and reduces the texture memory requirements to only
those needed for the currently bound textures. We implemented all of this using new versions of
the standard GL texture mapping functions (tex-def-2d and tex-bind-2d with the FAST-

DEFINITION flag set). This technique provides a playback rate of 10 frames per second. If the
current WALKTHRU system utilized these new features, video playback could occur from a
remote site on the Web after only a partial download. Video on the Web is generally stored in a
compressed format, usually MPEG [18]. We believe that uncompressing the video will not have
a significant negative impact on the frame rate, since efficient software solutions exist to perform
this operation. For example, the decompression of MPEG video generally runs on a midrange
machine at approximately 20 frames per second for frames larger than the ones we currently

52

display (320 x 240). The marginal increase in cost per frame to support compressed video will
probably not effect our original performance estimate of ten frames per second.

The use of SGI’s new fast-defined textures imposes one additional restriction on our system: the
texture sizes must be powers of two in both dimensions. The image frames of our video must be
modified to match this requirement. If the images are not powers of two in both dimensions,
image scaling can be applied. This technique can cause significant degradation in the video
frame quality, and in addition the actual operation of texture mapping video onto a polygon
causes a loss of image quality.

53

6 Discussion and Future Work

During the development and implementation of the WALK-KIN extension two major design
decisions were made. First, we analyzed a series of different options for enhancing the existing
scripting mechanism and incorporated a new scripting system into the WALKTHRU. Second,
during the integration and alteration of the WALKTHRU we considered using a different scene
description language and in the process altering the underlying graphics database structure, but
we decided that this change was not prudent at this time.

In the initial phases of this work, we considered a number of different languages for the scripting
mechanism used to define kinematic objects. The languages JavaTM, C++, C, LISP, VRML script,
and a compiled variant of the original BUMP system were all examined. At the beginning of the
project performance was considered most important, which translated directly to the choice of a
compiled rather than a parsed scripting system. Once a compiled system had been adopted and
the speed of script execution was no longer a primary concern, the need to easily express
complicated behavior became important. An ideal scripting system addressing both the
performance and expressiblity issues would be a variant of the JavaTM language. JavaTM supports
just-in-time-compilation, is platform independent, offers the dynamic alteration convenience of a
parsed/interpreted language, and has the speed of a compiled system. For the WALK-KIN
implementation, however, the actual language chosen was C, since JavaTM did not emerge as a
useful finished product until after C had been incorporated into the scripting system. The next
logical step for future work would be to incorporate a just-in-time-compiled variant of the JavaTM

language into the system. If such a major modification is not practical, then the current scripting
system should be augmented through dynamic linking (as discussed in Section 3.2), since this
will improve the interactivity of the system as well as the authoring environment.

A number of possible choices were considered for this project’s graphics platform and the
underlying database. For the past 10 years, we have utilized SGI’s graphics system and the
Berkeley UniGrafix language as the underlying data structure and scene graph hierarchy.
Periodically we have been considering switching to an externally supported system. The current
WALKTHRU system is not portable outside of the SGI workstation domain at Berkeley, since it
is written in GL and relies on UniGrafix as its scene description language. Other potential
systems we considered were OpenGL, OpenInventor, VRML 1.0/2.0, or the new Java3d system.
The last three of these systems support interaction elements and have a scripting system already
in place. The presence of a scripting and interaction system would naturally effect the choices
made above regarding the scripting mechanism employed by our new system. For example if we
chose VRML 2.0, then we could use JavaTM as the scripting mechanism and also use VRML’s
behavior defining elements and interaction devices to create interactive kinematic objects.

Moving from UniGrafix to one of these open standards would necessitate substantial
modifications to all of the WALKTHRU’s libraries as well as requiring a fundamental change in
the WALKTHRU’s database structure. The new database structure would need a whole new set
of elements to support the interaction and kinematic constructs present in any of these graphics

54

description languages. Finally, none of the three standards outlined above is a clear winner in
this arena, and therefore we should wait at least until Java3d is well established before
considering which, if any, of these systems we want to ultimately adopt. For these reasons the
current system has remained faithful to the Berkeley UniGrafix language and the corresponding
original WALKTHRU/WALKEDIT database.

In the current implementation of WALK-KIN a series of useful elements were omitted due to
time constraints. These elements would help to create a more author friendly environment for
the creation of interactive kinematic objects. The omitted elements include the ability to
reference arbitrary UniGrafix statement values and the BUMP package’s motion definition
constructs. The ability to reference geometry values from outside of their normal scope was
addressed by other UniGrafix tools and would provide a valuable addition to the authoring
environment. Such referencing should allow dollar sign expressions to reference any statement
values deep down in the scene-hierarchy making any sort of link between object behaviors
transparent in the UniGrafix file. Currently, such linking can be achieved only through included
C files. This obscures these relationships because it requires careful reading of the geometry
description and all of the related C script files. The original BUMP system had the ability to
define a variety of pre-defined motion prototypes. Among the BUMP elements that have not yet
been re-implemented are the defined motion statements (mdef and mapply) as well as the
presence of spline-based motion paths. Similarly, a more general offset path behavior that made
use of the new kinematic elements could also be defined and implemented in a future version of
the language. The addition of the extended referencing capabilities and/or the original BUMP
constructs would both require modifying the UniGrafix parser.

One of the new extensions of the WALK-KIN package is the ability to create an interactive
kinematic object capable of controlling a simulation. An interactive kinematic door in the
context of the CFAST fire simulator would allow the user to alter the flow of heat and smoke
between two rooms, and thereby affect the evolution of the fire simulation. Currently, our
interactive door object has no link to the fire simulation, since the simulation itself does not
provide the appropriate programming interface to allow dynamic updating of the simulation
space in a dynamic manner. At the completion of this project, the best approach to providing
this kind of control over the evolution of a fire would be to save the state of the entire simulation
when the door was manipulated, and then restart the simulation using this saved state on a new
cell/portal layout with the door’s portal modified. Clearly this is neither a fast nor a clean
implementation of the link between interactive kinematic objects and the WALKTHRU-CFAST
simulation system. What we really need is a programming interface for the CFAST simulation
that allows the simulation to be dynamically altered during execution. We understand that some
work at NIST is aimed in this direction.

55

7 Conclusions

The WALK-KIN extension provides a framework for defining and scripting interactive
kinematic objects for a WALKTHRU virtual environment. Toward this end, we implemented
and evaluated three complementary mechanisms. First, the existing scripting mechanism was
augmented to improve its expressiblity and performance. Second this new scripting mechanism
was integrated into the WALKTHRU/WALKEDIT environment, providing the framework
necessary for creating interactive kinematic objects. Third, we implemented a new interaction
event manager using the WALKEDIT selection mechanism and two event handlers. One of the
event handlers controls user interaction with the kinematic objects, and the other is used for
linking external information with the virtual model.

For the first task, we analyzed the original UniGrafix language and the BUMP scripting system.
We then incorporated the GLIDE compiled-code paradigm into the existing UniGrafix language.
We evaluated our new system by comparing it to the original BUMP system and measured the
various performance gains made. These comparison measurements showed that our new
compiled-code system yields impressive speedups relative to the old parsed system. In all of the
example scenes tested, the new system executes between 3 and 10 times faster than the original.
Furthermore, in all but one of the examples, the complexity of the graphics, and not the
execution of updating code, limits the frame rate and the overall performance of the animated
object.

The second task was accomplished by combining the new compiled-code paradigm with the
WALKTHRU/WALKEDIT virtual environment and by creating a framework for defining
objects using this new scripting mechanism. The new WALK-KIN paradigm enables new types
of kinematic objects that are more complex and whose update functions execute faster. In
addition, these new objects have been fully integrated into the WALKEDIT object manipulation
system and can be associated and relocated within the virtual environment just like other static
content objects. Finally, the wkadd application was modified so that these new compiled-code
kinematic objects can be incorporated into the WALKTHRU database of a virtual environment.

Our third extension was the addition of an interaction event mechanism and two new interaction
event handlers for the WALKTHRU/WALKEDIT system. Using the first event handler, objects
can be activated/deactivated and in general may respond to the user in a variety of complex
ways. The system’s object modification capabilities have been enhanced to provide interactive
time-varying manipulation of color and texture properties. All of these elements have been
combined together in a number of interactive kinematic example objects. A second interaction
event handler provides a link between content objects and the World Wide Web through a query
retrieval and Web browser display event handler.

A combination of all of these mechanisms can be used to create complex virtual objects. The
new scripting mechanism provides increased expressiblity and improved performance. In
addition, the interaction mechanisms and link to WALKEDIT creates a more usable and

56

interesting environment. Finally, we believe that all of these elements used in conjunction create
a more compelling and realistic virtual experience for the user.

57

Acknowledgements

This work was completed under the direction of my advisor Carlo Séquin, whose contributions
and guidance were instrumental in finishing this project. In addition, I want to thank Prof.
Landay for being my second reader. This project was built upon the foundation of the
WALKTHRU created by Seth Teller and Tom Funkhouser, and the WALKEDIT system created
by Richard Bukowski. Additional elements of the UGMovie application, implemented by
Gregory Couch, and the BUMP package, created by Steven Oakland, were used for performance
analysis and prototyping.

Aside from the direct contributors, I would like to thank all of the members of the Berkeley
Graphics group. In particular I would like to thank Maryann Simmons, who from the beginning
of my graduate career has always found time to help me, and in particular for reading and editing
parts of this final report, and for specific technical help. Also Ketan Mayer-Patel, Christopher
Healey, and Christina Tempelaar-Lietz deserve special attention for other related technical
support. In addition, Rick Bukowksi and Laura Downs deserve thanks for all of their
WALKTHRU/WALKEDIT related guidance and assistance. In general I would also like to
thank other members of the graphics group current and past: Sara McMains, Rick Lewis, Mark
Brunkhart, Ajay Sreekanth, Amy Hsu, and Jordan Smith.

During work on this project I was supported by the National Science Foundation grant number:
CDA 94-01156 and the project itself was partially supported by NEC and by the ONR MURI
grant N00014-96-1-12200.

Finally, I would like to dedicate this project to my immediate family for providing me with
intellectual support and especially to Jack Keller, whose vision and imagination prompted me to
go into science and engineering.

58

References

[1] Akeley, Kurt. RealityEngine Graphics. Proceedings of SIGGRAPH 93 (Anaheim, California,
August 1-6, 1993). In Computer Graphics Proceedings, Annual Conference Series, 1993, ACM
SIGGRAPH, New York, 1993, pp. 109-116.

[2] Ames, A., Nadeau, D.R., and John L. Moreland. The VRML Sourcebook. New York. Wiley,
1996.

[3] Bukowski, R. and Séquin, C. Interactive Simulation of Fire in Virtual Building
Environments. Proceedings of SIGGRAPH 97 (Los Angeles, California, August 3-8, 1997). In
Computer Graphics Proceedings, 1997, ACM SIGGRAPH, pp. 35-44

[4] Bukowksi, R.W. and Séquin, C.H. Object Associations: A Simple and Practical Approach to
Virtual 3D Manipulation. Proceedings of the 1995 Symposium on Interactive 3D Graphics
(Monterey, CA, April, 1995), pp. 131-138.

[5] Bukowksi, R.W. The WALKTHRU Editor: Towards Realistic and Effective Interaction with
Virtual Building Environments. Master’s Thesis, Computer Science Division (EECS), Technical
Report UCB/CSD-95-886, University of California, Berkeley November 1995.

[6] Couch, Gregory S. Berkeley UNIGRAFIX 3.1 and the Ugmovie animation previewer.
Technical Report, UCB/CSD-94-831, University of California, Berkeley, September 1994.

[7] Couch, Gregory S. Berkeley UNIGRAFIX 3.1-data structure and language. Technical Report
UCB/CSD-94-830, University of California, Berkeley, September 1994.

[8] dlopen manual pages, In IRIX Programmer’s Reference Manual, Release 5.3. On-Line
Documentation. Mountain View, CA. Silicon Graphics, Inc.

[9] dlsym manual pages, In IRIX Programmer’s Reference Manual, Release 5.3. On-Line
Documentation. Mountain View, CA. Silicon Graphics, Inc.

[10] Ferguson, Paula M. Motif Reference Manual. Sebastopol, CA. O’Reilly and Associates,
1993.

[11] Funkhouser, T.A. and Séquin, C.H. Adaptive Display Algorithm for Interactive Frame Rates
during Visualization of Complex Virtual Environments. Proc. of SIGGRAPH ’93 (Anaheim,
CA, Aug. 1993), pp. 247-254.

[12] Funkhouser, Thomas A. Database and Display Algorithms for Interactive Visualizations of
Architectural Models. Ph.D. Thesis, Computer Science Division (EECS), University of
California, Berkeley 1993.

[13] Geis K., and L. Pereira, “CS199 Final Report: GLIDE, Version 2.0”, Spring 1995.

59

[14] glprof manual pages, In IRIX Programmer’s Reference Manual, Release 4.0.5. On-Line
Documentation. Mountain View, CA. Silicon Graphics, Inc. May 1992.

[15] Grand, Mark. Java Language Reference. Cambridge, O’Reilly, 1997.

[16] Graphics Library Programming Guide, Document Version 2.0. Document Number 007-
1210-030. Mountain View, CA. Silicon Graphics, Inc. 1990.

[17] Hartman, J. and Wernecke. The VRML 2.0 Handbook: building moving worlds on the web.
Reading, Mass. Addison-Wesley, 1996.

[18] Mitchell, Joan L. et al. MPEG video: compression standard. New York, Chapman and
Hall, 1996.

[19] Oakland, Steven Anders. BUMP, a motion description and animation package. Master’s
Thesis, University of California at Berkeley, 1987.

[20] Ousterhout, John K. Tcl and the Tk toolkit. Reading, Mass. Addison-Wesley, 1994.

[21] Peacock, R.D., Forney, G.P., Reneke, P. et al. CFAST, the Consolidated Model of Fire
Growth and Smoke Transport. NIST technical note 1299, U.S. Department of Commerce, Feb.
1993.

[22] pixie manual pages, In IRIX Programmer’s Reference Manual, Release 4.0.5. On-Line
Documentation. Mountain View, CA. Silicon Graphics, Inc. May 1992.

[23] prof manual pages, In IRIX Programmer’s Reference Manual, Release 4.0.5. On-Line
Documentation. Mountain View, CA. Silicon Graphics, Inc. May 1992.

[24] Séquin, C. H., “SDL: Scene Description Language”, Lecture Notes, cs184, Fall 1991.

[25] Slater, M., Usoh, M., Chrysanthou, Y. The Influence of Dynamic Shadows on Presence in
Immersive Virtual Environments. in Virtual Environments ’95. Selected papers of the
Euographics Workshops 93 and 95. 1995. p. 8-21

[26] Slater, M., A. Steed and M. Usoh. Steps and Ladders in Virtual Reality. in ACM Virtual
Reality Science and Technology (VRST), eds. G. Singh and D. Thalmann, World Scientific. 1994
p. 45-54.

[27] Teller, S.J. and Séquin, C.H. Visibility Preprocessing for Interactive Walkthroughs. Proc.
of SIGGRAPH ’91 (Las Vegas, Nevada, Jul. 28-Aug. 2, 1991). In Computer Graphics, 25, 4 (Jul.
1991), pp. 61-69.

[28] Teller, Seth J. Visibility Computations in Densely Occluded Polyhedral Environments.
Ph.D. Thesis, Computer Science Division (EECS), University of California, Berkeley, 1992.

[29] Wernecke, John. The Inventor Mentor. Reading, Mass. Addison-Wesley, 1994.

60

[30] Zeltzer, D. (1992a) Autonomy, Interaction and Presence. Presence: Teleoperators and
Virtual Environments, 1 (1), pp. 127-132.

61

Appendix A: New Syntax for Time-Varying UniGrafix

This appendix describes the new UniGrafix syntax developed in this report for time-varying
objects using the compiled-code paradigm for parsing, code-generation and updating.

All of the original BUMP extension syntax is removed from the UG framework. The syntax
below details this improvement with the major gain being the use of C for the dollar sign
expressions. The basic change from the BUMP system extensions to the new format is the
content of a dollar sign expression, which now must be a valid syntax C expression or function
call. It is important to note that the first pass parser, dynUG, will not check the correctness of the
expression C code. In addition, dollar sign expressions are currently valid only in vertex
statements, color statements, and the transform elements of instance statements.

The use of any of the (meval…) type commands in their original form: vardef , meval ,
mexecute , mapply , move, and mdef is no longer permitted. The actual meval and vardef

constructs still exist in the language and can be used with the new C script functionality. In
addition, the functionality of mexecute can also be simulated using the new expression syntax by
creating invisible geometry which executes shell scripts through the C function call system() .
Finally, the statements of mapply , move and mdef are no longer supported as statements in the
language. However, the notion of a defined motion and applying it to different objects can be
created implicitly by writing generic C movement functions and having multiple object reference
them. These last elements are specifically omitted since files incorporating these features did not
appear in the WALKTHRU environment.

The syntax of the new statements annotated with comments appears below. The elements in
bold represent the actual keywords of the UniGrafix language. Elements appearing in square
brackets are optional.

Vardef statement:

The (vardef…) statement from the bump extension has been replaced with a similar variable
declaration mechanism, also called vardef . The syntax structure and functional elements of this
expression are taken directly from the GLIDE implementation [].

The syntax of this statement is as follows:

vardef variable_name $ variable_type $ $ assignment_expression $;

62

The value of variable_name is not placed within dollar sign characters and can be any valid C
identifier. The identifier is the same string used to reference this variable in other kinematic
expressions appearing elsewhere in the file. The variable_type expression represents the C
type of the user-defined variable being created by this statement. Any valid C type may be used,
such as int, float, double and char, or even a pointer, but beware that the end product of a
dollar sign expression appearing in any of the above statements is always cast to a float (see the
example of section 3, Figure 3 in the text). Finally, the assignment_expression must be a
valid C assignment statement, of the form “ variable_name = a valid c expression ”.
Both of the final two elements of this statement type must be surrounded by dollar signs.

The effect of a vardef is to create a variable declaration of the same name with the specified
type in the generated C file, ug.dynam.c. In addition, the assignment expression component of
the statement is placed within the function user_variable_update(), also appearing in
ug.dynam.c. This function user_variable_update() gets executed every frame of the
animation and the effect of this is to consecutively update all of the user-defined variables once
for every frame before subsequent expression evaluation.

Example of a vardef statement:

vardef t $ int $ $ t = (int)FRAME $;

This particular vardef statement produces the following C code:

static int t;

t = (int) FRAME ;

The first line generated is the global declaration of the user defined variable, and the second line
of code created is the assignment statement which is placed within the function
user_variable_update(). No checking is performed, so if the vardef statement’s
assignment_expression had been only “ = (int)FRAME “ then precisely this would have
been output causing a syntax error during the compilation step.

Vertex statement:

v name x_coord y_coord z_coord [w_coord] [color-name] ;

The values for x_coord, y_coord, and z_coord may be kinematic (dollar sign) expressions.
Currently, w_coord, name and color-name are fixed to be static values.

Example of a vertex statement:

v vertex1 $ FRAME * 2 $ 12.7 $position * fsinf(angle) $ red ;

63

This statement produces the following C code in one of the various cases of the switch
statement appearing in the function UG_DYNAM_FUNC0:

case 1:
floatval[0] = (float)(FRAME * 2);
floatval[1] = (float)(12.7);
floatval[2] = (float)(position * fsinf(angle));
break;

Elements to notice about the example are the use of FRAME, a predefined variable, and the
presence of two other variables position and angle. These other two variables must be defined
using the vardef construct mentioned below, or else a compilation error will occur later in the
viewing/parsing process. Furthermore, there is no checking at all by this program or by the C
compiler as to the ‘correctness’ of these statements. In other words if the position variable is
declared to be a char then its multiplication with the fsinf function is meaningless and the
value in the example assigned to the z coordinate of the vertex would be useless.

Instance statement:

i [name] (def_name [material_name [light_name]] [tforms]) ;

Currently, the new implementation of instance statements permits only the tforms element (i.e.
the transformations) to be a time-varying expression. The types of transformations allowed are
the same as in the original UniGrafix language with the exception of the arbitrary matrix
statements, which are not implemented. In addition, the floating point expressions of these
transform elements can be C code as in the vertex statements mentioned above. As an example
consider a moving cube:

Example of an instance statement:

i moving_cube (cube –tx $TIME * 2$ -ty $TIME * (-2)$) ;

This instance of a cube moves in the positive x direction and in the negative y direction as time
progressed. The C code generated by the parser is shown below:

case 1:
floatval[0] = (float)(TIME * 2);
floatval[1] = (float)(0.0);
floatval[2] = (float)(0.0);
break;

64

case 2:
floatval[0] = (float)(TIME * (-2));
floatval[1] = (float)(0.0);
floatval[2] = (float)(0.0);
break;

The only element of interest is that each and every transform of a time-varying instance
statement will be converted into a case statement of its own.

Color statement:

c name lightness [hue [saturation [translucency]]] ;

The current implementation only supports time-varying color statements defined in the LHS
system []. For this statement, the three variables lightness, hue, and saturation may be
dollar sign expressions, while the name and the translucency must be fixed. In the LHS system
the lightness of the color corresponds to its intensity (how far it is from black, zero
lightness), the hue corresponds to the color of the value (measured in degrees around a dual
hex-cone), while saturation is how much color of the appropriate hue is present (distance from
a gray value at zero saturation). This functions identically to a vertex statement except that
all but the first floating point value may be omitted. Likewise the C code generated is identical
in format to the code generated by a vertex statement.

Cinclude statement:

This new statement type has been added to facilitate the inclusion of C code functions into the
file generated (ug.dynam.c) from a time-varying UniGrafix file. The new statement type is
conceptually identical to the UG equivalent statement include and simply includes the named C
file in the generated code file ug.dynam.c. This is achieved by placing a C include statement in
the generated file with the appropriate filename.

The syntax is as follows:

cinclude file_name ;

This in turn generates the following C code in ug.dynam.c:

#include “file_name”;

The author of the UniGrafix file is responsible for placing this C file in a location that will enable

65

the C compiler to find it based upon the string given as the “ file_name ”.

Omitted Statements:

A number of items were left out of the new version of the time-varying UniGrafix syntax, among
them were the original bump elements concerning defined motion, as well as kinematic camera,
light and array statements. Finally, dollar sign expressions may only be placed within the
floating point values of the above statements. It is conceivable that a user might want to alter the
names and other strings in a UniGrafix file as time varies. This was intentionally left out since
its usefulness was unclear and it would have required considerably more work than this current
work.

Predefined Variables:

A number of new variables are provided to the author of new kinematic scenes. Most of these
are elements, which GLIDE incorporated into its system and allow simple user interaction and
time-dependent behavior.

They are listed below with a short description of what they represent:

Variable Name C Type Description

FRAME int the current frame number for an the animation
TIME float total time in seconds since the beginning of the animation
MOUSE_X int x coordinate of the mouse
MOUSE_Y int y coordinate of the mouse
RESOLUTION_X int viewing window’s x resolution
RESOLUTION_Y int viewing window’s y resolution

These variables maybe used in any dollar sign expressions that represent floating point numbers.
They are all declared to be static float. User-defined variables should not be created with the
same name, since this will cause compilation time errors.

66

Appendix B: Example time-varying geometry files

Original Cubogear File

Original BUMP extended UniGrafix file of the Cubogear, file: old_cubogear.ug

{MOVING cubocta gear on a pedestal for 5th floor machineroom}
{at x=2016 y-1632 z= 981 with center of gear at 981+75=1056}

c CUBOGEARyel .9 60 1.0;
c CUBOGEARgrn .9 120 1.0;
c CUBOGEARblu .9 240 1.0;
c CUBOGEARred .9 0 1.0;
c CUBOGEARped 0.7 0.0 0.0 ;

include wb.def;
include ws.def;
include ped.def;
i p (CUBOGEARped CUBOGEARped -tx 1800 -ty 1632 -tz 981);

def temp1;
(meval
 i g1 (CUBOGEARwb CUBOGEARgrn -tz 24.39112079 -rz $18*t$ -rx 90 -tx 1800 -ty
1632 -tz 1056);
 i g2 (CUBOGEARwb CUBOGEARgrn -tz 24.39112079 -rz $18*t$ -rx -90 -tx 1800 -
ty 1632 -tz 1056);
 i g3 (CUBOGEARwb CUBOGEARred -tz 24.39112079 -rz $18*t$ -rz 45 -tx 1800 -ty
1632 -tz 1056);
 i g4 (CUBOGEARwb CUBOGEARblu -tz 24.39112079 -rz $18*t$ -rz 45 -ry 90 -tx
1800 -ty 1632 -tz 1056);
 i g5 (CUBOGEARwb CUBOGEARred -tz 24.39112079 -rz $18*t$ -rz 45 -ry 180 -tx
1800 -ty 1632 -tz 1056);
 i g6 (CUBOGEARwb CUBOGEARblu -tz 24.39112079 -rz $18*t$ -rz 45 -ry 270 -tx
1800 -ty 1632 -tz 1056);
)
end;

def temp2;
(meval
 i G1 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -tx 1800 -ty 1632 -tz 1056);
 i G2 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -
54.73333333 -rz 45 -tx 1800 -ty 1632 -tz 1056);
 i G3 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -ry 90 -tx 1800 -ty 1632 -tz 1056);
 i G4 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -
54.73333333 -rz 45 -ry 90 -tx 1800 -ty 1632 -tz 1056);

67

 i G5 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -ry 180 -tx 1800 -ty 1632 -tz 1056);
 i G6 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -
54.73333333 -rz 45 -ry 180 -tx 1800 -ty 1632 -tz 1056);
 i G7 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -ry 270 -tx 1800 -ty 1632 -tz 1056);
 i G8 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -
54.73333333 -rz 45 -ry 270 -tx 1800 -ty 1632 -tz 1056);
)
end;

def temp;
i (temp1);
i (temp2);
end;

i (temp);

New Cubogear File

New extended UniGrafix file describing the Cubogear sculpture, file: new_cubogear.ug

{MOVING cubocta gear on a pedestal for 5th floor machineroom}
{at x=2016 y-1632 z= 981 with center of gear at 981+75=1056}

c CUBOGEARyel .9 60 1.0;
c CUBOGEARgrn .9 120 1.0;
c CUBOGEARblu .9 240 1.0;
c CUBOGEARred .9 0 1.0;
c CUBOGEARped 0.7 0.0 0.0 ;

vardef t $ int $ $ t = (int)FRAME $;

include wb.def;
include ws.def;
include ped.def;

i p (CUBOGEARped CUBOGEARped -tx 1800 -ty 1632 -tz 981);
i g1 (CUBOGEARwb CUBOGEARgrn -tz 24.39112079 -rz $18*t$ -rx 90 -tx 1800 -ty
1632 -tz 1056);
i g2 (CUBOGEARwb CUBOGEARgrn -tz 24.39112079 -rz $18*t$ -rx -90 -tx 1800 -ty
1632 -tz 1056);
i g3 (CUBOGEARwb CUBOGEARred -tz 24.39112079 -rz $18*t$ -rz 45 -tx 1800 -ty
1632 -tz 1056);
i g4 (CUBOGEARwb CUBOGEARblu -tz 24.39112079 -rz $18*t$ -rz 45 -ry 90 -tx
1800 -ty 1632 -tz 1056);
i g5 (CUBOGEARwb CUBOGEARred -tz 24.39112079 -rz $18*t$ -rz 45 -ry 180 -tx
1800 -ty 1632 -tz 1056);

68

i g6 (CUBOGEARwb CUBOGEARblu -tz 24.39112079 -rz $18*t$ -rz 45 -ry 270 -tx
1800 -ty 1632 -tz 1056);

i G1 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -tx 1800 -ty 1632 -tz 1056);
i G2 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -54.73333333
-rz 45 -tx 1800 -ty 1632 -tz 1056);
i G3 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -ry 90 -tx 1800 -ty 1632 -tz 1056);
i G4 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -54.73333333
-rz 45 -ry 90 -tx 1800 -ty 1632 -tz 1056);
i G5 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -ry 180 -tx 1800 -ty 1632 -tz 1056);
i G6 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -54.73333333
-rz 45 -ry 180 -tx 1800 -ty 1632 -tz 1056);
i G7 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx 54.73333333
-rz 45 -ry 270 -tx 1800 -ty 1632 -tz 1056);
i G8 (CUBOGEARws CUBOGEARyel -tz 29.56724974 -rz $15 - 36*t$ -rx -54.73333333
-rz 45 -ry 270 -tx 1800 -ty 1632 -tz 1056);

Original Juggling File

Original UniGrafix Juggling Scene (before the C pre-processor), file: original_juggling.ug

(vardef a t*0.1 0 6)

#define h 2
#define w 2
#define d 1.2
#define BALL_RAD 0.5
#define WRAP6(t) (((t)<6)?((t)):((t)-6))
#define LINEAR(t,x0,x1) (((t)*(x1) + (1-(t))*(x0)))
#define PARABOLAX(t,x0,x2) (0.5 * ((t)*(x2) + (2-(t))*(x0)))
#define PARABOLAY(t,y) ((y)*(1-((t)-1)*((t)-1)))
#define H0(t) (1 + (t)*(t)*(2*(t) - 3))
#define H0p(t) ((t)*(1 + (t)*((t)-2)))
#define H1(t) ((t)*(t)*(3-2*(t)))
#define H1p(t) ((t)*(t)*((t)-1))

#define HERMITE(t,h0,h0p,h1,h1p)
((h0)*H0(t)+(h0p)*H0p(t)+(h1)*H1(t)+(h1p)*H1p(t))

#define TIME6(t,x0,x1,x2,x3,x4,x5)
(((t)<1)?(x0):(((t)<2)?(x1):(((t)<3)?(x2):(((t)<4)?(x3):(((t)<5)?(x4):(((t)<=
6)?(x5):(0)))))))

69

#define BALLX(t) TIME6(t,PARABOLAX(t,0,w),PARABOLAX(t,0,w),HERMITE(t-
2,w,w/2,w-d,-w/2),PARABOLAX(t-3,w-d,-d),PARABOLAX(t-3,w-d,-d),HERMITE(t-5,-
d,-w/2,0,w/2))

#define BALLY(t) TIME6(t,PARABOLAY(t,h),PARABOLAY(t,h),HERMITE(t-2,0,-
2*h,0,2*h),PARABOLAY(t-3,h),PARABOLAY(t-3,h),HERMITE(t-5,0,-2*h,0,2*h))

c ball_color 1.0 0 1.0;
c ball_color2 1.0 100 1.0;
c wall_color 1.0 240 1.0;

def ball;
include ball.ug;
end;

def back;
v v0 0 0 0;
v v1 1 0 0;
v v2 1 1 0;
v v3 0 1 0;
f f0 (v0 v1 v2 v3) wall_color;
end;

def all;
(meval
i (back -sx $ w+3*d $ -sy $ 2*h $ -tz -1 -ty $ -h/2 $ -tx $ -2*d $);
i (ball -sa BALL_RAD -tx $ BALLX(WRAP6(a)) $ -ty $ BALLY(WRAP6(a)) $);
i (ball -sa BALL_RAD -tx $ BALLX(WRAP6(a+2)) $ -ty $ BALLY(WRAP6(a+2)) $);
i (ball -sa BALL_RAD -tx $ BALLX(WRAP6(a+4)) $ -ty $ BALLY(WRAP6(a+4)) $);
)
end;

i (all) ;

Preprocessed Juggling File

Original UniGrafix Juggling Scene after the C pre-processor, file: post_cpp_juggling.ug

(vardef a t*0.1 0 6)

{This file was created from the file original_juggling.ug using the C
preprocessor}

c ball_color 1.0 0 1.0;
c ball_color2 1.0 100 1.0;
c wall_color 1.0 240 1.0;

def ball;
include ball.ug;

70

end;

def back;
v v0 0 0 0;
v v1 1 0 0;
v v2 1 1 0;
v v3 0 1 0;
f f0 (v0 v1 v2 v3) wall_color;
end;

def all;
(meval
i (back -sx $ 2+3*1.2 $ -sy $ 2*2 $ -tz -1 -ty $ -2/2 $ -tx $ -2*1.2 $);
i (ball -sa 0.5 -tx $ ((((((a)<6)?((a)):((a)-6)))<1)?((0.5 * ((
(((a)<6)?((a)):((a)-6)))*(2) + (2-((((a)<6)?((a)):((a)-6))))*(0)))):(((
(((a)<6)?((a)):((a)-6)))<2)?((0.5 * (((((a)<6)?((a)):((a)-6)))*(2) + (2-(
(((a)<6)?((a)):((a)-6))))*(0)))):((((((a)<6)?((a)):((a)-6)))<3)?(((2)* (1 +
((((a)<6)?((a)):((a)-6))-2)*((((a)<6)?((a)):((a)-6))-2)*(2*(
(((a)<6)?((a)):((a)-6))-2) - 3))+(2/2)* (((((a)<6)?((a)):((a)-6))-2)*(1 + (
(((a)<6)?((a)):((a)-6))-2)*(((((a)<6)?((a)):((a)-6))-2)-2)))+(2-1.2)* ((
(((a)<6)?((a)):((a)-6))-2)*((((a)<6)?((a)):((a)-6))-2)*(3-2*(
(((a)<6)?((a)):((a)-6))-2)))+(-2/2)* (((((a)<6)?((a)):((a)-6))-2)*(
(((a)<6)?((a)):((a)-6))-2)*(((((a)<6)?((a)):((a)-6))-2)-1)))):(((
(((a)<6)?((a)):((a)-6)))<4)?((0.5 * (((((a)<6)?((a)):((a)-6))-3)*(-1.2) +
(2-((((a)<6)?((a)):((a)-6))-3))*(2-1.2)))):((((((a)<6)?((a)):((a)-6)))<5)?(
(0.5 * (((((a)<6)?((a)):((a)-6))-3)*(-1.2) + (2-((((a)<6)?((a)):((a)-6))-
3))*(2-1.2)))):((((((a)<6)?((a)):((a)-6)))<=6)?(((-1.2)* (1 + (
(((a)<6)?((a)):((a)-6))-5)*((((a)<6)?((a)):((a)-6))-5)*(2*(
(((a)<6)?((a)):((a)-6))-5) - 3))+(-2/2)* (((((a)<6)?((a)):((a)-6))-5)*(1 + (
(((a)<6)?((a)):((a)-6))-5)*(((((a)<6)?((a)):((a)-6))-5)-2)))+(0)* ((
(((a)<6)?((a)):((a)-6))-5)*((((a)<6)?((a)):((a)-6))-5)*(3-2*(
(((a)<6)?((a)):((a)-6))-5)))+(2/2)* (((((a)<6)?((a)):((a)-6))-5)*(
(((a)<6)?((a)):((a)-6))-5)*(((((a)<6)?((a)):((a)-6))-5)-1)))):(0))))))) $ -
ty $ ((((((a)<6)?((a)):((a)-6)))<1)?(((2)*(1-(((((a)<6)?((a)):((a)-6)))-
1)*(((((a)<6)?((a)):((a)-6)))-1)))):((((((a)<6)?((a)):((a)-6)))<2)?(
((2)*(1-(((((a)<6)?((a)):((a)-6)))-1)*(((((a)<6)?((a)):((a)-6)))-1)))):(((
(((a)<6)?((a)):((a)-6)))<3)?(((0)* (1 + ((((a)<6)?((a)):((a)-6))-2)*(
(((a)<6)?((a)):((a)-6))-2)*(2*((((a)<6)?((a)):((a)-6))-2) - 3))+(-2*2)* ((
(((a)<6)?((a)):((a)-6))-2)*(1 + ((((a)<6)?((a)):((a)-6))-2)*((
(((a)<6)?((a)):((a)-6))-2)-2)))+(0)* (((((a)<6)?((a)):((a)-6))-2)*(
(((a)<6)?((a)):((a)-6))-2)*(3-2*((((a)<6)?((a)):((a)-6))-2)))+(2*2)* ((
(((a)<6)?((a)):((a)-6))-2)*((((a)<6)?((a)):((a)-6))-2)*((
(((a)<6)?((a)):((a)-6))-2)-1)))):((((((a)<6)?((a)):((a)-6)))<4)?(((2)*(1-((
(((a)<6)?((a)):((a)-6))-3)-1)*(((((a)<6)?((a)):((a)-6))-3)-1)))):(((
(((a)<6)?((a)):((a)-6)))<5)?(((2)*(1-(((((a)<6)?((a)):((a)-6))-3)-1)*((
(((a)<6)?((a)):((a)-6))-3)-1)))):((((((a)<6)?((a)):((a)-6)))<=6)?(((0)* (1
+ ((((a)<6)?((a)):((a)-6))-5)*((((a)<6)?((a)):((a)-6))-5)*(2*(
(((a)<6)?((a)):((a)-6))-5) - 3))+(-2*2)* (((((a)<6)?((a)):((a)-6))-5)*(1 + (
(((a)<6)?((a)):((a)-6))-5)*(((((a)<6)?((a)):((a)-6))-5)-2)))+(0)* ((
(((a)<6)?((a)):((a)-6))-5)*((((a)<6)?((a)):((a)-6))-5)*(3-2*(
(((a)<6)?((a)):((a)-6))-5)))+(2*2)* (((((a)<6)?((a)):((a)-6))-5)*(
(((a)<6)?((a)):((a)-6))-5)*(((((a)<6)?((a)):((a)-6))-5)-1)))):(0))))))) $);

71

i (ball -sa 0.5 -tx $ ((((((a+2)<6)?((a+2)):((a+2)-6)))<1)?((0.5 * ((
(((a+2)<6)?((a+2)):((a+2)-6)))*(2) + (2-((((a+2)<6)?((a+2)):((a+2)-
6))))*(0)))):((((((a+2)<6)?((a+2)):((a+2)-6)))<2)?((0.5 * ((
(((a+2)<6)?((a+2)):((a+2)-6)))*(2) + (2-((((a+2)<6)?((a+2)):((a+2)-
6))))*(0)))):((((((a+2)<6)?((a+2)):((a+2)-6)))<3)?(((2)* (1 + (
(((a+2)<6)?((a+2)):((a+2)-6))-2)*((((a+2)<6)?((a+2)):((a+2)-6))-2)*(2*(
(((a+2)<6)?((a+2)):((a+2)-6))-2) - 3))+(2/2)* (((((a+2)<6)?((a+2)):((a+2)-
6))-2)*(1 + ((((a+2)<6)?((a+2)):((a+2)-6))-2)*(((((a+2)<6)?((a+2)):((a+2)-
6))-2)-2)))+(2-1.2)* (((((a+2)<6)?((a+2)):((a+2)-6))-2)*(
(((a+2)<6)?((a+2)):((a+2)-6))-2)*(3-2*((((a+2)<6)?((a+2)):((a+2)-6))-2)))+(-
2/2)* (((((a+2)<6)?((a+2)):((a+2)-6))-2)*((((a+2)<6)?((a+2)):((a+2)-6))-
2)*(((((a+2)<6)?((a+2)):((a+2)-6))-2)-1)))):((((((a+2)<6)?((a+2)):((a+2)-
6)))<4)?((0.5 * (((((a+2)<6)?((a+2)):((a+2)-6))-3)*(-1.2) + (2-(
(((a+2)<6)?((a+2)):((a+2)-6))-3))*(2-1.2)))):((((((a+2)<6)?((a+2)):((a+2)-
6)))<5)?((0.5 * (((((a+2)<6)?((a+2)):((a+2)-6))-3)*(-1.2) + (2-(
(((a+2)<6)?((a+2)):((a+2)-6))-3))*(2-1.2)))):((((((a+2)<6)?((a+2)):((a+2)-
6)))<=6)?(((-1.2)* (1 + ((((a+2)<6)?((a+2)):((a+2)-6))-5)*(
(((a+2)<6)?((a+2)):((a+2)-6))-5)*(2*((((a+2)<6)?((a+2)):((a+2)-6))-5) -
3))+(-2/2)* (((((a+2)<6)?((a+2)):((a+2)-6))-5)*(1 + (
(((a+2)<6)?((a+2)):((a+2)-6))-5)*(((((a+2)<6)?((a+2)):((a+2)-6))-5)-
2)))+(0)* (((((a+2)<6)?((a+2)):((a+2)-6))-5)*((((a+2)<6)?((a+2)):((a+2)-
6))-5)*(3-2*((((a+2)<6)?((a+2)):((a+2)-6))-5)))+(2/2)* ((
(((a+2)<6)?((a+2)):((a+2)-6))-5)*((((a+2)<6)?((a+2)):((a+2)-6))-5)*((
(((a+2)<6)?((a+2)):((a+2)-6))-5)-1)))):(0))))))) $ -ty $ (((
(((a+2)<6)?((a+2)):((a+2)-6)))<1)?(((2)*(1-(((((a+2)<6)?((a+2)):((a+2)-
6)))-1)*(((((a+2)<6)?((a+2)):((a+2)-6)))-1)))):(((
(((a+2)<6)?((a+2)):((a+2)-6)))<2)?(((2)*(1-(((((a+2)<6)?((a+2)):((a+2)-
6)))-1)*(((((a+2)<6)?((a+2)):((a+2)-6)))-1)))):(((
(((a+2)<6)?((a+2)):((a+2)-6)))<3)?(((0)* (1 + ((((a+2)<6)?((a+2)):((a+2)-
6))-2)*((((a+2)<6)?((a+2)):((a+2)-6))-2)*(2*((((a+2)<6)?((a+2)):((a+2)-6))-
2) - 3))+(-2*2)* (((((a+2)<6)?((a+2)):((a+2)-6))-2)*(1 + (
(((a+2)<6)?((a+2)):((a+2)-6))-2)*(((((a+2)<6)?((a+2)):((a+2)-6))-2)-
2)))+(0)* (((((a+2)<6)?((a+2)):((a+2)-6))-2)*((((a+2)<6)?((a+2)):((a+2)-
6))-2)*(3-2*((((a+2)<6)?((a+2)):((a+2)-6))-2)))+(2*2)* ((
(((a+2)<6)?((a+2)):((a+2)-6))-2)*((((a+2)<6)?((a+2)):((a+2)-6))-2)*((
(((a+2)<6)?((a+2)):((a+2)-6))-2)-1)))):((((((a+2)<6)?((a+2)):((a+2)-
6)))<4)?(((2)*(1-(((((a+2)<6)?((a+2)):((a+2)-6))-3)-1)*((
(((a+2)<6)?((a+2)):((a+2)-6))-3)-1)))):((((((a+2)<6)?((a+2)):((a+2)-
6)))<5)?(((2)*(1-(((((a+2)<6)?((a+2)):((a+2)-6))-3)-1)*((
(((a+2)<6)?((a+2)):((a+2)-6))-3)-1)))):((((((a+2)<6)?((a+2)):((a+2)-
6)))<=6)?(((0)* (1 + ((((a+2)<6)?((a+2)):((a+2)-6))-5)*(
(((a+2)<6)?((a+2)):((a+2)-6))-5)*(2*((((a+2)<6)?((a+2)):((a+2)-6))-5) -
3))+(-2*2)* (((((a+2)<6)?((a+2)):((a+2)-6))-5)*(1 + (
(((a+2)<6)?((a+2)):((a+2)-6))-5)*(((((a+2)<6)?((a+2)):((a+2)-6))-5)-
2)))+(0)* (((((a+2)<6)?((a+2)):((a+2)-6))-5)*((((a+2)<6)?((a+2)):((a+2)-
6))-5)*(3-2*((((a+2)<6)?((a+2)):((a+2)-6))-5)))+(2*2)* ((
(((a+2)<6)?((a+2)):((a+2)-6))-5)*((((a+2)<6)?((a+2)):((a+2)-6))-5)*((
(((a+2)<6)?((a+2)):((a+2)-6))-5)-1)))):(0))))))) $);
i (ball -sa 0.5 -tx $ ((((((a+4)<6)?((a+4)):((a+4)-6)))<1)?((0.5 * ((
(((a+4)<6)?((a+4)):((a+4)-6)))*(2) + (2-((((a+4)<6)?((a+4)):((a+4)-
6))))*(0)))):((((((a+4)<6)?((a+4)):((a+4)-6)))<2)?((0.5 * ((
(((a+4)<6)?((a+4)):((a+4)-6)))*(2) + (2-((((a+4)<6)?((a+4)):((a+4)-

72

6))))*(0)))):((((((a+4)<6)?((a+4)):((a+4)-6)))<3)?(((2)* (1 + (
(((a+4)<6)?((a+4)):((a+4)-6))-2)*((((a+4)<6)?((a+4)):((a+4)-6))-2)*(2*(
(((a+4)<6)?((a+4)):((a+4)-6))-2) - 3))+(2/2)* (((((a+4)<6)?((a+4)):((a+4)-
6))-2)*(1 + ((((a+4)<6)?((a+4)):((a+4)-6))-2)*(((((a+4)<6)?((a+4)):((a+4)-
6))-2)-2)))+(2-1.2)* (((((a+4)<6)?((a+4)):((a+4)-6))-2)*(
(((a+4)<6)?((a+4)):((a+4)-6))-2)*(3-2*((((a+4)<6)?((a+4)):((a+4)-6))-2)))+(-
2/2)* (((((a+4)<6)?((a+4)):((a+4)-6))-2)*((((a+4)<6)?((a+4)):((a+4)-6))-
2)*(((((a+4)<6)?((a+4)):((a+4)-6))-2)-1)))):((((((a+4)<6)?((a+4)):((a+4)-
6)))<4)?((0.5 * (((((a+4)<6)?((a+4)):((a+4)-6))-3)*(-1.2) + (2-(
(((a+4)<6)?((a+4)):((a+4)-6))-3))*(2-1.2)))):((((((a+4)<6)?((a+4)):((a+4)-
6)))<5)?((0.5 * (((((a+4)<6)?((a+4)):((a+4)-6))-3)*(-1.2) + (2-(
(((a+4)<6)?((a+4)):((a+4)-6))-3))*(2-1.2)))):((((((a+4)<6)?((a+4)):((a+4)-
6)))<=6)?(((-1.2)* (1 + ((((a+4)<6)?((a+4)):((a+4)-6))-5)*(
(((a+4)<6)?((a+4)):((a+4)-6))-5)*(2*((((a+4)<6)?((a+4)):((a+4)-6))-5) -
3))+(-2/2)* (((((a+4)<6)?((a+4)):((a+4)-6))-5)*(1 + (
(((a+4)<6)?((a+4)):((a+4)-6))-5)*(((((a+4)<6)?((a+4)):((a+4)-6))-5)-
2)))+(0)* (((((a+4)<6)?((a+4)):((a+4)-6))-5)*((((a+4)<6)?((a+4)):((a+4)-
6))-5)*(3-2*((((a+4)<6)?((a+4)):((a+4)-6))-5)))+(2/2)* ((
(((a+4)<6)?((a+4)):((a+4)-6))-5)*((((a+4)<6)?((a+4)):((a+4)-6))-5)*((
(((a+4)<6)?((a+4)):((a+4)-6))-5)-1)))):(0))))))) $ -ty $ (((
(((a+4)<6)?((a+4)):((a+4)-6)))<1)?(((2)*(1-(((((a+4)<6)?((a+4)):((a+4)-
6)))-1)*(((((a+4)<6)?((a+4)):((a+4)-6)))-1)))):(((
(((a+4)<6)?((a+4)):((a+4)-6)))<2)?(((2)*(1-(((((a+4)<6)?((a+4)):((a+4)-
6)))-1)*(((((a+4)<6)?((a+4)):((a+4)-6)))-1)))):(((
(((a+4)<6)?((a+4)):((a+4)-6)))<3)?(((0)* (1 + ((((a+4)<6)?((a+4)):((a+4)-
6))-2)*((((a+4)<6)?((a+4)):((a+4)-6))-2)*(2*((((a+4)<6)?((a+4)):((a+4)-6))-
2) - 3))+(-2*2)* (((((a+4)<6)?((a+4)):((a+4)-6))-2)*(1 + (
(((a+4)<6)?((a+4)):((a+4)-6))-2)*(((((a+4)<6)?((a+4)):((a+4)-6))-2)-
2)))+(0)* (((((a+4)<6)?((a+4)):((a+4)-6))-2)*((((a+4)<6)?((a+4)):((a+4)-
6))-2)*(3-2*((((a+4)<6)?((a+4)):((a+4)-6))-2)))+(2*2)* ((
(((a+4)<6)?((a+4)):((a+4)-6))-2)*((((a+4)<6)?((a+4)):((a+4)-6))-2)*((
(((a+4)<6)?((a+4)):((a+4)-6))-2)-1)))):((((((a+4)<6)?((a+4)):((a+4)-
6)))<4)?(((2)*(1-(((((a+4)<6)?((a+4)):((a+4)-6))-3)-1)*((
(((a+4)<6)?((a+4)):((a+4)-6))-3)-1)))):((((((a+4)<6)?((a+4)):((a+4)-
6)))<5)?(((2)*(1-(((((a+4)<6)?((a+4)):((a+4)-6))-3)-1)*((
(((a+4)<6)?((a+4)):((a+4)-6))-3)-1)))):((((((a+4)<6)?((a+4)):((a+4)-
6)))<=6)?(((0)* (1 + ((((a+4)<6)?((a+4)):((a+4)-6))-5)*(
(((a+4)<6)?((a+4)):((a+4)-6))-5)*(2*((((a+4)<6)?((a+4)):((a+4)-6))-5) -
3))+(-2*2)* (((((a+4)<6)?((a+4)):((a+4)-6))-5)*(1 + (
(((a+4)<6)?((a+4)):((a+4)-6))-5)*(((((a+4)<6)?((a+4)):((a+4)-6))-5)-
2)))+(0)* (((((a+4)<6)?((a+4)):((a+4)-6))-5)*((((a+4)<6)?((a+4)):((a+4)-
6))-5)*(3-2*((((a+4)<6)?((a+4)):((a+4)-6))-5)))+(2*2)* ((
(((a+4)<6)?((a+4)):((a+4)-6))-5)*((((a+4)<6)?((a+4)):((a+4)-6))-5)*((
(((a+4)<6)?((a+4)):((a+4)-6))-5)-1)))):(0))))))) $);
)
end;

i (all);

73

New Juggling File

Juggling scene using the new extended syntax system, file: new_juggling.ug

vardef q $float$ $ q = (float)((0.01)*FRAME) $;

cinclude jug.c;

c ball_color 1.0 0 1.0;
c ball_color2 1.0 100 1.0;
c wall_color 1.0 240 1.0;

def object;
include ball.ug;

end;

def back;
v v0 0 0 0;
v v1 1 0 0;
v v2 1 1 0;
v v3 0 1 0;
f f0 (v0 v1 v2 v3) wall_color;
end;

def temp;
i (back -sx $ 2+3*1.2 $ -sy $ 2*2 $ -tz -1 -ty $ -2/2 $ -tx $ -2*1.2 $);
i (object -sa 0.5 -tx $ BALLX(WRAP6(q)) $ -ty $ BALLY(WRAP6(q)) $);
i (object -sa 0.5 -tx $ BALLX(WRAP6(q+2)) $ -ty $ BALLY(WRAP6(q+2)) $);
i (object -sa 0.5 -tx $ BALLX(WRAP6(q+4)) $ -ty $ BALLY(WRAP6(q+4)) $);
end;

i (temp);

C Code File for New Juggling Example

Included C file for the new juggling scene (defines all referenced functions), file: jug.c

/* c file for use in the juggler routine needs to be included in the dynamic
c file */

#define h 2
#define w 2
#define d 1.2

float WRAP6(float t)
{ return (((t)<6)?((t)):((t)-6)); }

74

float LINEAR(float t, float x0, float x1)
{ return((t)*(x1) + (1-(t))*(x0)); }

float PARABOLAX(float t, float x0, float x2)
{ return((0.5 * ((t)*(x2) + (2-(t))*(x0)))); }

float PARABOLAY(float t, float y)
{ return (((y)*(1-((t)-1)*((t)-1)))); }

float H0(float t)
{ return (1 + (t)*(t)*(2*(t) - 3)); }

float H0p(float t)
{ return((t)*(1 + (t)*((t)-2))); }

float H1(float t)
{ return ((t)*(t)*(3-2*(t))); }

float H1p(float t)
{ return((t)*(t)*((t)-1)); }

float HERMITE(float t, float h0, float h0p, float h1, float h1p)
{ return((h0)*H0(t)+(h0p)*H0p(t)+(h1)*H1(t)+(h1p)*H1p(t)); }

float TIME6(float t, float x0, float x1, float x2, float x3,
float x4, float x5)

{ return (((t)<1)?(x0):(((t)<2)?(x1):(((t)<3)?(x2):(((t)<4)?(x3)
 :(((t)<5)?(x4):(((t)<=6)?(x5):(0))))))); }

float BALLX(float t)
{
 float ret_value;
 ret_value = TIME6(t,PARABOLAX(t,0,w),PARABOLAX(t,0,w),

 HERMITE(t-2,w,w/2,w-d,-w/2),
 PARABOLAX(t-3,w-d,-d),PARABOLAX(t-3,w-d,-d),
 HERMITE(t-5,-d,-w/2,0,w/2));

 return ret_value;
}

float BALLY(float t)
{
 float ret_value;
 ret_value = TIME6(t,PARABOLAY(t,h),PARABOLAY(t,h),

HERMITE(t-2,0,-2*h,0,2*h),PARABOLAY(t-3,h),
PARABOLAY(t-3,h),HERMITE(t-5,0,-2*h,0,2*h));

 return ret_value;
}

75

Gravity Simulation New Kinematic UniGrafix File

Gravity simulation scene description in the new extended system, file: grav.ug

{Simulation of four objects moving underneath a psuedo gravity force within
the walls of a cube environment which repel the objects from the boundary}

{Walls of a cube}
v w_v1 10 10 10;
v w_v2 -10 10 10;
v w_v3 -10 -10 10;
v w_v4 10 -10 10;
v w_v5 10 10 -10;
v w_v6 -10 10 -10;
v w_v7 -10 -10 -10;
v w_v8 10 -10 -10;

f top (w_v4 w_v3 w_v2 w_v1);
f front (w_v5 w_v8 w_v4 w_v1);
f back (w_v6 w_v2 w_v3 w_v7);
f bottom (w_v6 w_v7 w_v8 w_v5);
f right (w_v5 w_v1 w_v2 w_v6);
f left (w_v8 w_v7 w_v3 w_v4);

c c1 0.5 45 1;
c c2 0.5 95 1;
c c3 0.5 145 1;

{generic dynamic object}
def sphere;

include ball.ug;
end;

{ C include statement for the psuedo gravity simulation }
cinclude grav.c;

{ within the two objects below the array of variables objs is defined in the
C file grav.c which is included }

i object1 (sphere
 -tx $objs[0]->c_of_mass->x$
 -ty $objs[0]->c_of_mass->y$
 -tz $objs[0]->c_of_mass->z$);

i object2 (sphere -sa 0.5
 -tx $objs[1]->c_of_mass->x$
 -ty $objs[1]->c_of_mass->y$
 -tz $objs[1]->c_of_mass->z$);

i object3 (sphere -sa 0.5
 -tx $objs[2]->c_of_mass->x$

76

 -ty $objs[2]->c_of_mass->y$
 -tz $objs[2]->c_of_mass->z$);

i object4 (sphere -sa 0.5
 -tx $objs[3]->c_of_mass->x$
 -ty $objs[3]->c_of_mass->y$
 -tz $objs[3]->c_of_mass->z$);

C Code Control File for Gravity Simulation

Included C code file in the above (performs the simulation), file: grav.c

This file performs the simulation of the various objects and the gravitational forces interacting
among the objects. It provides the new compiled-code UniGrafix file with a link to the
simulation’s data structures via an array of structure pointers (objs). The structure objs takes an
ID as an index and returns the updated 3d coordinates of that particular (ID) object for the current
value of time.

Note: in order to actually view this file the generated C file ug.dynam.c must be modified such
that the function initialize_all() gets called in the initialize_dynamics() routine and
that the find_all_positions() function gets called in the update_global_variables()

function. See the future work section for additions that would remove this part of the process.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define sq(arg) ((arg)*(arg))
#define G_grav_constant 100.0 /* used to be 100.0 */
#define Van_constant 5.0 /* used for almost inter-penetrating object*/
#define IMPACT 30.0 /* used if distance is two small */
#define cube(arg) ((arg)*(arg)*(arg))
#define TRUE 1
#define FALSE 0

typedef struct {
 double x; double y; double z;
} vector;

typedef struct {
 vector *c_of_mass; /* center of mass of the object */
 vector *vel;
 double mass;
 int moving_obj;
} object;

77

typedef struct {
 vector *normal; /* normal to the plane of the wall */
 vector *c_of_mass; /* center of mass of the wall */
 double mass;
} wall;

/* global variables */
vector *cur_force; vector *acc; vector *dif_vec; vector *force;

double dt; /* size of the time stamp size */

wall **walls;
object **objs;

#define NUM_WALLS 6
#define NUM_OBJECTS 4
int do_initialize = 1;

void error (char *string) { printf("An Error Has Occurred: %s \n"); }

void initialize_global_vectors(void) {
 cur_force = (vector *)malloc(sizeof(vector));
 acc = (vector *)malloc(sizeof(vector));
 dif_vec = (vector *)malloc(sizeof(vector));
 force = (vector *)malloc(sizeof(vector));
}

void initialize_walls(void) {
 int i;
 walls = (wall **)malloc(sizeof(wall *)*NUM_WALLS);
 if (walls == NULL) { error("unable to malloc all walls, exiting");
exit(0);}
 for (i = 0; i < NUM_WALLS; i++) {
 walls[i] = (wall *)malloc(sizeof(wall));
 if (walls[i] == NULL) { error("unable to malloc a wall, exiting");
exit(0);}
 walls[i]->normal = (vector *)malloc(sizeof(vector));
 if (walls[i]->normal == NULL) { error("unable to malloc a wall normal,
exiting"); exit(0);}
 walls[i]->c_of_mass = (vector *)malloc(sizeof(vector));
 if (walls[i]->c_of_mass == NULL) { error("unable to malloc a wall center
of mass, exiting"); exit(0);}
 }
}

void initialize_objects(void) {
 int i;
 objs = (object **)malloc(sizeof(object *)*NUM_OBJECTS);
 if (objs == NULL) { error("unable to malloc all objects, exiting");
exit(0);}
 for (i = 0; i < NUM_OBJECTS; i++) {
 objs[i] = (object *)malloc(sizeof(object));

78

 if (objs[i] == NULL) { error("unable to malloc an object, exiting");
exit(0);}
 objs[i]->c_of_mass = (vector *)malloc(sizeof(vector));
 if (objs[i]->c_of_mass == NULL) { error("unable to malloc an object
center of mass, exiting"); exit(0);}
 objs[i]->vel = (vector *)malloc(sizeof(vector));
 if (objs[i]->vel == NULL) { error("unable to malloc an object velocity,
exiting"); exit(0);}
 }
}

void load_walls(void) {
 walls[0]->normal->x = 1.0; walls[1]->normal->x = -1.0;
 walls[0]->normal->y = 0.0; walls[1]->normal->y = 0.0;
 walls[0]->normal->z = 0.0; walls[1]->normal->z = 0.0;
 walls[0]->c_of_mass->x = -10.0; walls[1]->c_of_mass->x = 10.0;
 walls[0]->c_of_mass->y = 0.0; walls[1]->c_of_mass->y = 0.0;
 walls[0]->c_of_mass->z = 0.0; walls[1]->c_of_mass->z = 0.0;
 walls[0]->mass = 5.0; walls[1]->mass = 5.0;

 walls[2]->normal->x = 0.0; walls[3]->normal->x = 0.0;
 walls[2]->normal->y = 1.0; walls[3]->normal->y = -1.0;
 walls[2]->normal->z = 0.0; walls[3]->normal->z = 0.0;
 walls[2]->c_of_mass->x = 0.0; walls[3]->c_of_mass->x = 0.0;
 walls[2]->c_of_mass->y = -10.0; walls[3]->c_of_mass->y = 10.0;
 walls[2]->c_of_mass->z = 0.0; walls[3]->c_of_mass->z = 0.0;
 walls[2]->mass = 5.0; walls[3]->mass = 5.0;

 walls[4]->normal->x = 0.0; walls[5]->normal->x = 0.0;
 walls[4]->normal->y = 0.0; walls[5]->normal->y = 0.0;
 walls[4]->normal->z = -1.0; walls[5]->normal->z = 1.0;
 walls[4]->c_of_mass->x = 0.0; walls[5]->c_of_mass->x = 0.0;
 walls[4]->c_of_mass->y = 0.0; walls[5]->c_of_mass->y = 0.0;
 walls[4]->c_of_mass->z = 10.0; walls[5]->c_of_mass->z = -10.0;
 walls[4]->mass = 5.0; walls[5]->mass = 5.0;
}

void load_objects(void) {
 /* currently the number of objects is only four 0 - 3*/
 objs[0]->c_of_mass->x = 0.0; objs[1]->c_of_mass->x = 70.0;
 objs[0]->c_of_mass->y = 0.0; objs[1]->c_of_mass->y = 0.0;
 objs[0]->c_of_mass->z = 0.0; objs[1]->c_of_mass->z = 0.0;
 objs[0]->vel->x = 0.0; objs[1]->vel->x = 0.0;
 objs[0]->vel->y = 0.0; objs[1]->vel->y = 100.0;
 objs[0]->vel->z = 0.0; objs[1]->vel->z = 0.0;
 objs[0]->mass = 100.0; objs[1]->mass = 1.0;
 objs[0]->moving_obj = FALSE; objs[1]->moving_obj = TRUE;

 objs[2]->c_of_mass->x = 73.0; objs[3]->c_of_mass->x = 0.0;
 objs[2]->c_of_mass->y = 0.0; objs[3]->c_of_mass->y = 12.0;
 objs[2]->c_of_mass->z = 0.0; objs[3]->c_of_mass->z = 0.0;
 objs[2]->vel->x = 0.0; objs[3]->vel->x = 10.0;

79

 objs[2]->vel->y = 118.0; objs[3]->vel->y = 0.0;
 objs[2]->vel->z = 0.0; objs[3]->vel->z = 0.0;
 objs[2]->mass = 0.5; objs[3]->mass = 1.0;
 objs[2]->moving_obj = TRUE; objs[3]->moving_obj = TRUE;
}

void initialize_all(void) {
 if (do_initialize) {
 initialize_global_vectors();
 dt = 0.01;
 if (NUM_WALLS > 0) {
 initialize_walls();
 load_walls();
 } else {
 printf("Warning the value for the number of walls was zero \n");
 }
 if (NUM_OBJECTS > 0) {
 initialize_objects();
 load_objects();
 } else {
 printf("Warning the value for the number of objects was zero \n");
 }
 do_initialize = 0;
 }
}

double find_distance (vector *v1, vector *v2){
 double distance;
 distance = sqrt(sq(v1->x - v2->x) + sq(v1->y - v2->y) + sq(v1->z - v2->z));
 return distance;
}

double find_dist_wall_obj (object *obj, wall *wall1) {
 /* REQUIRES THE VECTOR dif_vec to be global */
 double mag;
 double distance;
 double dot_product;
 dif_vec->x = (wall1->c_of_mass->x) - (obj->c_of_mass->x);
 dif_vec->y = (wall1->c_of_mass->y) - (obj->c_of_mass->y);
 dif_vec->z = (wall1->c_of_mass->z) - (obj->c_of_mass->z);
 mag = sqrt(sq(wall1->normal->x) + sq(wall1->normal->y)

 + sq(wall1->normal->z));
 dot_product = fabs((wall1->normal->x)*(dif_vec->x) +

(wall1->normal->y)*(dif_vec->y) + (wall1->normal->z)*(dif_vec->z));
 distance = dot_product/mag;
 return distance;
}

vector *find_force_objs (object *obj1, object *obj2) {
 double mag;
 double distance;

80

 double dir_x;
 double dir_y;
 double dir_z;
 distance = find_distance(obj1->c_of_mass, obj2->c_of_mass);
 if (distance <= 0.2) {
 mag = IMPACT;
 printf("an impact occurred between two objects \n");
 } else if (distance <= 0.6) {
 mag = (-1.0)*(Van_constant/ distance);
 printf("objects too close using repuslive force \n");
 } else {
 mag = ((obj1->mass)*(obj2->mass)*G_grav_constant)/ (sq(distance));
 }
 dir_x = obj2->c_of_mass->x - obj1->c_of_mass->x;
 dir_y = obj2->c_of_mass->y - obj1->c_of_mass->y;
 dir_z = obj2->c_of_mass->z - obj1->c_of_mass->z;
 force->x = dir_x*mag; force->y = dir_y*mag; force->z = dir_z*mag;
 return force;
}

vector *find_force_obj_wall (object *obj, wall *wall1) {
 double distance;
 double mag;
 distance = find_dist_wall_obj(obj, wall1);
 if (distance <= 0.1) {
 mag = IMPACT;
 printf("an impact occurred between the wall and an object !!! \n");
 } else {
 mag = ((obj->mass)*(wall1->mass)*G_grav_constant)/ (sq(distance));
 }
 /* the direction is in the normal of the wall */
 force->x = (wall1->normal->x)*mag;
 force->y = (wall1->normal->y)*mag;
 force->z = (wall1->normal->z)*mag;
 return force;
}

void update_object (object *obj) {
 int i;
 vector *new_force;
 cur_force->x = 0.0; cur_force->y = 0.0; cur_force->z = 0.0;
 for (i = 0; i < NUM_WALLS; i++) {
 new_force = find_force_obj_wall (obj, walls[i]);
 cur_force->x = cur_force->x + new_force->x;
 cur_force->y = cur_force->y + new_force->y;
 cur_force->z = cur_force->z + new_force->z;
 }
 for (i = 0; i < NUM_OBJECTS; i++) {
 if (obj != objs[i]) {
 new_force = find_force_objs (obj, objs[i]);
 cur_force->x = cur_force->x + new_force->x;
 cur_force->y = cur_force->y + new_force->y;

81

 cur_force->z = cur_force->z + new_force->z;
 }
 }
 acc->x = (cur_force->x)/(obj->mass);
 acc->y = (cur_force->y)/(obj->mass);
 acc->z = (cur_force->z)/(obj->mass);
 obj->c_of_mass->x = (0.5)*(acc->x)*sq(dt) +

(obj->vel->x)*dt + obj->c_of_mass->x;
 obj->c_of_mass->y = (0.5)*(acc->y)*sq(dt) +

(obj->vel->y)*dt + obj->c_of_mass->y;
 obj->c_of_mass->z = (0.5)*(acc->z)*sq(dt) +

(obj->vel->z)*dt + obj->c_of_mass->z;
 obj->vel->x = (acc->x)*dt + obj->vel->x;
 obj->vel->y = (acc->y)*dt + obj->vel->y;
 obj->vel->z = (acc->z)*dt + obj->vel->z;
}

void find_all_positions (void) {
 int i;
 for (i = 0; i < NUM_OBJECTS; i++) {

if(objs[i]->moving_obj == TRUE) {
 update_object(objs[i]);
 }
 }
}

82

Appendix C: Locations of Demo Files and Other Related Example Files

A copy of this file can be found on-line at: http://www.cs.berkeley.edu/~ug/WALK-
KIN/AppendixC.html

1- Tutorial for UGMovie application and compilation script: (Section 2 and 3)

http://www.cs.berkeley.edu/~ug/WALK-KIN/ugmovie.html

2- Location for the two kinematic sculptures hingebug and cubogear (Section 4).

http://www.cs.berkeley.edu/~ug/WALK-KIN/kinematic/sculptures.html

3- Location for the kinematic gravity simulation example (Section 4), also see Appendix B.

http://www.cs.berkeley.edu/~ug/WALK-KIN/kinematic/gravity.html

4- Location for the multi-cube example (Section 4).

http://www.cs.berkeley.edu/~ug/WALK-KIN/interactive/mcube.html

5- Interactive juggling sculpture object example (Section 5), also see Appendix B.

http://www.cs.berkeley.edu/~ug/WALK-KIN/interactive/juggling.html

6- Re-implementation of BUMP sculpture objects as interactive elements (Section 5).

http://www.cs.berkeley.edu/~ug/WALK-KIN/interactive/sculptures.html

7- Interactive video viewscreen object example and notes (Section 5).

http://www.cs.berkeley.edu/~ug/WALK-KIN/interactive/viewscreen.html

8- WALK-KIN extension notes and wkadd tutorial (Section 4).

http://www.cs.berkeley.edu/~ug/WALK-KIN/walk_kin.html

